Lincoln G A, Ebling F J, Almeida O F
Ciba Found Symp. 1985;117:129-48. doi: 10.1002/9780470720981.ch9.
In mammals, information about the environmental photoperiod is relayed from the retina to the suprachiasmatic nuclei (SCN) in the anterior hypothalamus and via the sympathetic nervous system to the pineal gland where it influences the secretion of melatonin. Light plays a dual role: to suppress the release of melatonin and to entrain the circadian rhythm generators in the SCN, which govern the endogenous melatonin rhythm. Under normal daily light-dark cycles melatonin secretion is confined to the dark period. In most photoperiodic species the daily pattern of secretion changes in response to changes in daylength, and this acts as a physiological time cue in the brain for the control of seasonal cycles in reproduction, moulting and other processes. To illustrate the underlying mechanisms that control the melatonin rhythm, results are presented from five experiments in which the blood plasma concentrations of melatonin were measured in Soay rams exposed to a variety of artificial changes in photoperiod including a switch from 16L:8D (16 h light:8 h dark) or 8L:16D to constant darkness, a switch from constant darkness to 1L:23D and a switch from 16L:8D to a 25 h or 23 h light-dark cycle. The results confirm that the melatonin rhythm is generated endogenously and will free-run under constant darkness with a period close to 24 h for at least 10 days. The rhythm can be entrained by exposure to IL:23D with the end of the light period acting as the 'melatonin-on' signal, and phase-shifts in the melatonin rhythm can be induced by phase-shifts in the light-dark cycle. The period for which melatonin concentrations are high each day (melatonin peak) also varies in duration under the different photoperiods, as a result of both the suppressive and the entraining effects of light. Two models explaining the control of melatonin peak duration are discussed.
在哺乳动物中,有关环境光周期的信息从视网膜传递到下丘脑前部的视交叉上核(SCN),并通过交感神经系统传递到松果体,在那里它影响褪黑素的分泌。光起着双重作用:抑制褪黑素的释放并使SCN中的昼夜节律发生器同步,而SCN控制着内源性褪黑素节律。在正常的日常明暗周期下,褪黑素的分泌仅限于黑暗期。在大多数光周期物种中,每日分泌模式会随着日照长度的变化而改变,这在大脑中作为一种生理时间线索,用于控制繁殖、换羽和其他过程中的季节性周期。为了阐明控制褪黑素节律的潜在机制,本文展示了五项实验的结果,这些实验测量了索艾羊(Soay ram)在暴露于各种人工光周期变化后的血浆褪黑素浓度,这些变化包括从16小时光照:8小时黑暗(16L:8D)或8小时光照:16小时黑暗切换到持续黑暗,从持续黑暗切换到1小时光照:23小时黑暗,以及从16L:8D切换到25小时或23小时的明暗周期。结果证实,褪黑素节律是内源性产生的,并且在持续黑暗条件下至少10天内会以接近24小时的周期自由运行。通过暴露于1小时光照:23小时黑暗,以光照期结束作为“褪黑素开启”信号,可以使节律同步,并且在明暗周期发生相位变化时,可以诱导褪黑素节律的相位变化。由于光的抑制和同步作用,在不同光周期下,每天褪黑素浓度处于高水平的时间段(褪黑素峰值)的持续时间也会有所不同。本文讨论了解释褪黑素峰值持续时间控制的两种模型。