Hastings M H, Herbert J, Martensz N D, Roberts A C
Ann N Y Acad Sci. 1985;453:182-204. doi: 10.1111/j.1749-6632.1985.tb11810.x.
Animals restrict the time of birth of offspring to the most advantageous time of year, usually spring or summer. This is achieved by controlling the preceding period of fertility and, in some cases, by delaying implantation of the zygote. Seasonal changes in daylength, the principal, though not the only cue, regulate pulsatile release of hypothalamic releasing factors that in turn activates the pituitary-gonadal axis. The role of the neuroendocrine system is therefore to translate the photoperiodic stimulus into an endocrine signal (Figure 12). The measurement of day length is a function of the circadian system, environmental light being sampled on a 24-hour basis. Experimental manipulations of the photoperiodic response have revealed the existence of a rhythm of sensitivity to the presence of light that is entrained by the prevailing photoperiod. Light falling within the period of maximal sensitivity results in an LD type response. It is important to note that although different species measure day length in a similar manner, the gonadal response to a given photoperiod will vary between species depending upon the nature of their seasonal reproductive strategy. Photic information is conveyed from the retina to the pineal gland by way of the suprachiasmatic nuclei of the hypothalamus and the cervical sympathetic trunk. The central connections between these structures are poorly understood. The pineal is an essential mediator of the photoperiodic response. The effects of pinealectomy vary between species, but in all cases the responses to changes in day length are blocked. The gland is neither anti- nor progonadotrophic; it merely provides a signal. This signal is probably the nocturnal release of melatonin. Studies on in vivo melatonin production and the responses of photoperiodic species to timed administration of exogenous melatonin have suggested that the duration of nocturnal melatonin production by the pineal is read by the CNS as an indicator of the length of darkness. This model for PTM provides a physiological basis to the observed rhythm of sensitivity to light. This period of sensitivity is probably a parallel to the nocturnal rhythm of melatonin production. Light falling in this phase blocks melatonin production, truncates the pineal signal, and hence produces an LD response by the CNS. The site of the signal detector is not known, although the anterior hypothalamus may be involved. How the pineal signal triggers changes in the hypothalamic LHRH pulse generator is not known. The endogenous opioids, however, especially beta-END may have a major role in exercising photoperiodic control over pituitary action.
动物将后代的出生时间限制在一年中最有利的时期,通常是春季或夏季。这是通过控制之前的生育期来实现的,在某些情况下,还通过延迟受精卵的着床来实现。日照长度的季节性变化是主要的(尽管不是唯一的)线索,它调节下丘脑释放因子的脉冲式释放,进而激活垂体 - 性腺轴。因此,神经内分泌系统的作用是将光周期刺激转化为内分泌信号(图12)。日照长度的测量是昼夜节律系统的功能,环境光以24小时为基础进行采样。对光周期反应的实验操作揭示了对光存在的敏感性节律的存在,这种节律由当时的光周期所调节。落在最大敏感性时期内的光会导致长日照(LD)型反应。需要注意的是,尽管不同物种以相似的方式测量日照长度,但不同物种对给定光周期的性腺反应会因它们季节性繁殖策略的性质而有所不同。光信息通过下丘脑的视交叉上核和颈交感干从视网膜传递到松果体。这些结构之间的中枢连接尚不清楚。松果体是光周期反应的重要介导者。松果体切除的影响因物种而异,但在所有情况下,对日照长度变化的反应都会被阻断。该腺体既不是抗促性腺的也不是促性腺的;它仅仅提供一个信号。这个信号可能是褪黑素的夜间释放。对体内褪黑素产生以及光周期物种对外源褪黑素定时给药的反应的研究表明,松果体夜间产生褪黑素的持续时间被中枢神经系统解读为黑暗长度的指标。这个光周期时间测量(PTM)模型为观察到的对光的敏感性节律提供了生理基础。这个敏感时期可能与褪黑素产生的夜间节律平行。落在这个阶段的光会阻断褪黑素的产生,截断松果体信号,从而使中枢神经系统产生长日照(LD)反应。信号探测器的位置尚不清楚,尽管下丘脑前部可能参与其中。松果体信号如何触发下丘脑促性腺激素释放激素(LHRH)脉冲发生器的变化尚不清楚。然而,内源性阿片类物质,尤其是β - 内啡肽(β - END)可能在对垂体作用进行光周期控制中起主要作用。