Shi Ziyi, Jin Yanghao, Han Tong, Yang Hanmin, Gond Ritambhara, Subasi Yaprak, Asfaw Habtom Desta, Younesi Reza, Jönsson Pär G, Yang Weihong
Department of Material Science and Engineering, KTH Royal Institute of Technology, 114 28, Stockholm, Sweden.
Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, Box 538, 75121, Uppsala, Sweden.
Sci Rep. 2024 Feb 17;14(1):3966. doi: 10.1038/s41598-024-54509-8.
Producing sustainable anode materials for lithium-ion batteries (LIBs) through catalytic graphitization of renewable biomass has gained significant attention. However, the technology is in its early stages due to the bio-graphite's comparatively low electrochemical performance in LIBs. This study aims to develop a process for producing LIB anode materials using a hybrid catalyst to enhance battery performance, along with readily available market biochar as the raw material. Results indicate that a trimetallic hybrid catalyst (Ni, Fe, and Mn in a 1:1:1 ratio) is superior to single or bimetallic catalysts in converting biochar to bio-graphite. The bio-graphite produced under this catalyst exhibits an 89.28% degree of graphitization and a 73.95% conversion rate. High-resolution transmission electron microscopy (HRTEM) reveals the dissolution-precipitation mechanism involved in catalytic graphitization. Electrochemical performance evaluation showed that the trimetallic hybrid catalyst yielded bio-graphite with better electrochemical performances than those obtained through single or bimetallic hybrid catalysts, including a good reversible capacity of about 293 mAh g at a current density of 20 mA/g and a stable cycle performance with a capacity retention of over 98% after 100 cycles. This study proves the synergistic efficacy of different metals in catalytic graphitization, impacting both graphite crystalline structure and electrochemical performance.
通过可再生生物质的催化石墨化生产用于锂离子电池(LIBs)的可持续负极材料已引起广泛关注。然而,由于生物石墨在锂离子电池中的电化学性能相对较低,该技术仍处于早期阶段。本研究旨在开发一种使用混合催化剂生产锂离子电池负极材料的工艺,以提高电池性能,同时以市场上容易获得的生物炭为原料。结果表明,三金属混合催化剂(镍、铁和锰的比例为1:1:1)在将生物炭转化为生物石墨方面优于单金属或双金属催化剂。在这种催化剂作用下制备的生物石墨的石墨化程度为89.28%,转化率为73.95%。高分辨率透射电子显微镜(HRTEM)揭示了催化石墨化过程中的溶解-沉淀机制。电化学性能评估表明,与单金属或双金属混合催化剂制备的生物石墨相比,三金属混合催化剂制备的生物石墨具有更好的电化学性能,包括在20 mA/g的电流密度下约293 mAh/g的良好可逆容量以及稳定的循环性能,在100次循环后容量保持率超过98%。本研究证明了不同金属在催化石墨化中的协同作用,这对石墨晶体结构和电化学性能都有影响。