Agroecology, BayCEER, University of Bayreuth, Bayreuth, Bayern, Germany.
Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.
Plant Cell Environ. 2024 Jun;47(6):1987-1996. doi: 10.1111/pce.14858. Epub 2024 Feb 19.
Nitrogen availability in the rhizosphere relies on root-microorganism interactions, where root exudates trigger soil organic matter (SOM) decomposition through the rhizosphere priming effect (RPE). Though microbial necromass contribute significantly to organically bound soil nitrogen (N), the role of RPEs in regulating necromass recycling and plant nitrogen acquisition has received limited attention. We used N natural abundance as a proxy for necromass-N since necromass is enriched in N compared to other soil-N forms. We combined studies using the same experimental design for continuous CO labelling of various plant species and the same soil type, but considering top- and subsoil. RPE were quantified as difference in SOM-decomposition between planted and unplanted soils. Results showed higher plant N uptake as RPEs increased. The positive relationship between N-enrichment of shoots and roots and RPEs indicated an enhanced necromass-N turnover by RPE. Moreover, our data revealed that RPEs were saturated with increasing carbon (C) input via rhizodeposition in topsoil. In subsoil, RPEs increased linearly within a small range of C input indicating a strong effect of root-released C on decomposition rates in deeper soil horizons. Overall, this study confirmed the functional importance of rhizosphere C input for plant N acquisition through enhanced necromass turnover by RPEs.
根际氮素的有效性依赖于根系-微生物的相互作用,其中根系分泌物通过根际激发效应(RPE)触发土壤有机质(SOM)分解。虽然微生物残体对有机结合态土壤氮(N)的贡献很大,但 RPE 在调节残体循环和植物氮吸收方面的作用却受到了有限的关注。我们使用 N 自然丰度作为残体-N 的替代物,因为与其他土壤-N 形式相比,残体富含 N。我们结合了使用相同实验设计连续 CO 标记各种植物物种和相同土壤类型的研究,但考虑了表土和底土。RPE 被量化为种植和未种植土壤之间 SOM 分解的差异。结果表明,随着 RPE 的增加,植物氮吸收增加。根际激发效应与地上部和根系氮素富集之间的正相关关系表明,RPE 增强了残体-N 的周转。此外,我们的数据表明,随着根分泌物在表土中输入碳(C)的增加,RPE 逐渐饱和。在底土中,RPE 在 C 输入的小范围内呈线性增加,这表明根系释放的 C 对深层土壤层分解速率的强烈影响。总的来说,这项研究证实了根际碳输入对植物 N 吸收的功能重要性,这是通过 RPE 增强残体周转实现的。