Reyes-Francis Emmanuel, Echeverría-Arrondo Carlos, Esparza Diego, López-Luke Tzarara, Soto-Montero Tatiana, Morales-Masis Monica, Turren-Cruz Silver-Hamill, Mora-Seró Iván, Julián-López Beatriz
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Edificio U, Ciudad Universitaria, Morelia, Michoacán C.P. 58030, Mexico.
Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Sos Baynat, s/n, Castelló de la Plana 12071, Spain.
Chem Mater. 2024 Feb 2;36(3):1728-1736. doi: 10.1021/acs.chemmater.3c03108. eCollection 2024 Feb 13.
Theoretical studies have identified cesium titanium bromide (CsTiBr), a vacancy-ordered double perovskite, as a promising lead-free and earth-abundant candidate to replace Pb-based perovskites in photovoltaics. Our research is focused on overcoming the limitations associated with the current CsTiBr syntheses, which often involve high-vacuum and high-temperature evaporation techniques, high-energy milling, or intricate multistep solution processes conducted under an inert atmosphere, constraints that hinder industrial scalability. This study presents a straightforward, low-energy, and scalable solution procedure using microwave radiation to induce the formation of highly crystalline CsTiBr in a polar solvent. This methodology, where the choice of the solvent plays a crucial role, not only reduces the energy costs associated with perovskite production but also imparts exceptional stability to the resulting solid, in comparison with previous reports. This is a critical prerequisite for any technological advancement. The low-defective material demonstrates unprecedented structural stability under various stimuli such as moisture, oxygen, elevated temperatures (over 130 °C), and continuous exposure to white light illumination. In summary, our study represents an important step forward in the efficient and cost-effective synthesis of CsTiBr, offering a compelling solution for the development of eco-friendly, earth-abundant Pb-free perovskite materials.
理论研究已确定溴化铯钛(CsTiBr),一种空位有序的双钙钛矿,是一种有前景的无铅且富含地球元素的候选材料,可在光伏领域替代铅基钙钛矿。我们的研究重点是克服当前CsTiBr合成方法的局限性,这些方法通常涉及高真空和高温蒸发技术、高能球磨,或在惰性气氛下进行的复杂多步溶液法,这些限制阻碍了工业规模化生产。本研究提出了一种简单易行、低能耗且可扩展的溶液法,利用微波辐射在极性溶剂中诱导形成高度结晶的CsTiBr。该方法中,溶剂的选择起着关键作用,与之前的报道相比,不仅降低了与钙钛矿生产相关的能源成本,还赋予了所得固体优异的稳定性。这是任何技术进步的关键前提。这种低缺陷材料在诸如湿度、氧气、高温(超过130°C)以及持续白光照射等各种刺激下表现出前所未有的结构稳定性。总之,我们的研究代表了CsTiBr高效且经济合成方面的重要进展,为开发环保、富含地球元素的无铅钙钛矿材料提供了一个引人注目的解决方案。