Brumberg Alexandra, Kuklinski Owen, Kent Greggory T, Morgan Emily E, Mikhailovsky Alexander A, Strom T Amanda, Chabinyc Michael L, Seshadri Ram
Department of Materials, University of California, Santa Barbara, California 93106, United States.
Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States.
Chem Mater. 2024 Sep 16;36(19):9625-9635. doi: 10.1021/acs.chemmater.4c01701. eCollection 2024 Oct 8.
Vacancy-ordered double perovskites with the formula (where is a +1 cation, is a +4 metal, and is a halide ion) offer improved ambient stability over other main-group halide perovskites and potentially reduced toxicity compared to those containing lead. These compounds are readily formed through a number of synthetic routes; however, the manner in which the synthetic route affects the resulting structure or optoelectronic properties has not been examined. Here, we investigate the role of distinct precursors and solvents in the formation of the indirect band gap vacancy-ordered double perovskite CsTeBr. While CsTeBr can be synthesized from TeBr or TeO, we find that synthesis from TeBr is more sensitive to solvent selection, requiring a polar solvent to enable the conversion of TeBr. Synthesis from TeO proceeds in all of the organic solvents tested, provided that HBr is added to solubilize TeO and enable the formation of [TeBr]. Furthermore, the choice of metal precursor and solvent impacts the product color and optical absorption edge, which we find arises from particle size effects. The emission energy remains unaffected, consistent with the idea that emission in these zero-dimensional structures arises from the isolated [TeBr] octahedra, which undergo dynamic Jahn-Teller distortion rather than band-edge recombination. Our work highlights how even minor changes in synthetic procedures can lead to variability in metrics such as the absorption edge and emission lifetime and sheds light on how the optical properties of these semiconductors can be controlled for light-emitting applications.
化学式为 (其中 为 +1 价阳离子, 为 +4 价金属, 为卤离子)的空位有序双钙钛矿相比于其他主族卤化物钙钛矿具有更好的环境稳定性,并且与含铅的钙钛矿相比潜在毒性更低。这些化合物可以通过多种合成路线轻松形成;然而,合成路线影响所得结构或光电性质的方式尚未得到研究。在此,我们研究了不同前驱体和溶剂在间接带隙空位有序双钙钛矿 CsTeBr 形成过程中的作用。虽然 CsTeBr 可以由 TeBr 或 TeO 合成,但我们发现由 TeBr 合成对溶剂选择更为敏感,需要极性溶剂来实现 TeBr 的转化。在所有测试的有机溶剂中,只要添加 HBr 使 TeO 溶解并形成 [TeBr],由 TeO 进行的合成就能进行。此外,金属前驱体和溶剂的选择会影响产物颜色和光吸收边缘,我们发现这是由粒径效应引起的。发射能量不受影响,这与这些零维结构中的发射源于孤立的 [TeBr] 八面体的观点一致,[TeBr] 八面体经历动态 Jahn - Teller 畸变而非带边复合。我们的工作突出了即使合成过程中的微小变化也会导致诸如吸收边缘和发射寿命等指标的变化,并阐明了如何为发光应用控制这些半导体的光学性质。