Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
Guangxi University of Science and Technology, Liuzhou 545006, China.
J Mater Chem B. 2024 Mar 6;12(10):2594-2609. doi: 10.1039/d3tb02840b.
Although plant-derived cancer therapeutic products possess great promise in clinical translations, they still suffer from quick degradation and low targeting rates. Herein, based on the oxygen vacancy (OV)-immobilization strategy, an OV-enriched biodegradable silicate nanoplatform with atomically dispersed Fe/Mn active species and polyethylene glycol modification was innovated for loading gallic acid (GA) (noted as FMMPG) for intratumoral coordination-enhanced multicatalytic cancer therapy. The OV-enriched FMMPG nanozymes with a narrow band gap (1.74 eV) can be excited by a 650 nm laser to generate reactive oxygen species. Benefiting from the Mn-O bond in response to the tumor microenvironment (TME), the silicate skeleton in FMMPG collapses and completely degrades after 24 h. The degraded metal M (M = Fe, Mn) ions and released GA can produce a stable M-GA nanocomplex at tumor sites. Importantly, the formed M-GA with strong reductive ability can transform HO into the fatal hydroxyl radical, causing serious oxidative damage to the tumor. The released Fe and Mn can serve as enhanced contrast agents for magnetic resonance imaging, which can track the chemodynamic and photodynamic therapy processes. The work offers a reasonable strategy for a TME-responsive degradation and intratumoral coordination-enhanced multicatalytic therapy founded on bimetallic silicate nanozymes to achieve desirable tumor theranostic outcomes.
尽管植物来源的癌症治疗产品在临床转化中具有巨大的应用前景,但它们仍然存在快速降解和靶向率低的问题。在此,基于氧空位(OV)固定化策略,创新性地设计了一种富含 OV 的可生物降解硅酸盐纳米平台,其中原子分散的 Fe/Mn 活性物种和聚乙二醇进行了修饰,用于负载没食子酸(GA)(记为 FMMPG)以实现肿瘤内配位增强多催化癌症治疗。具有窄带隙(1.74 eV)的富含 OV 的 FMMPG 纳米酶可以被 650nm 激光激发,从而产生活性氧。由于硅酸盐骨架中 Mn-O 键响应肿瘤微环境(TME),FMMPG 在 24 小时后完全坍塌和降解。降解的金属 M(M=Fe、Mn)离子和释放的 GA 可以在肿瘤部位产生稳定的 M-GA 纳米复合物。重要的是,形成的具有强还原能力的 M-GA 可以将 HO 转化为致命的羟基自由基,对肿瘤造成严重的氧化损伤。释放的 Fe 和 Mn 可以作为磁共振成像的增强造影剂,用于跟踪化学动力学和光动力治疗过程。该工作为基于双金属硅酸盐纳米酶的 TME 响应性降解和肿瘤内配位增强多催化治疗提供了一种合理的策略,以实现理想的肿瘤治疗效果。
Arch Ital Urol Androl. 2025-6-30
Health Technol Assess. 2025-7-2