Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China.
ACS Nano. 2024 Jan 16;18(2):1516-1530. doi: 10.1021/acsnano.3c08780. Epub 2024 Jan 3.
Biodegradable silicate nanoconstructs have aroused tremendous interest in cancer therapeutics due to their variable framework composition and versatile functions. Nevertheless, low intratumoral retention still limits their practical application. In this study, oxygen vacancy (OV)-enriched bimetallic silicate nanozymes with Fe-Ca dual active sites via modification of oxidized sodium alginate and gallic acid (GA) loading (OFeCa-V@GA) were developed for targeted aggregation-potentiated therapy. The band gap of silica markedly decreased from 2.76 to 1.81 eV by codoping of Fe and Ca, enabling its excitation by a 650 nm laser to generate reactive oxygen species. The OV that occurred in the hydrothermal synthetic stage of OFeCa-V@GA can anchor the metal ions to form an atomic phase, offering a massive fabrication method of single-atom nanozymes. Density functional theory results reveal that the Ca sites can promote the adsorption of HO and Fe sites can accelerate the dissociation of HO, thereby realizing a synergetic catalytic effect. More importantly, the targeted delivery of metal ions can induce a morphological transformation at tumor sites, leading to high retention (the highest retention rate is 36.3%) of theranostic components in tumor cells. Thus, this finding may offer an ingenious protocol for designing and engineering highly efficient and long-retention nanodrugs.
基于氧化海藻酸钠和没食子酸(GA)负载的富氧空位(OV)双金属硅酸盐纳米酶(OFeCa-V@GA)的构建及其用于靶向聚集增强治疗的研究
由于其可变的框架组成和多功能性,可降解硅酸盐纳米结构在癌症治疗中引起了极大的兴趣。然而,低的肿瘤内保留仍然限制了它们的实际应用。在这项研究中,通过修饰氧化海藻酸钠和没食子酸(GA)负载(OFeCa-V@GA),制备了具有 Fe-Ca 双活性位点的富氧空位(OV)双金属硅酸盐纳米酶。通过共掺杂 Fe 和 Ca,硅的能带隙从 2.76 显著降低到 1.81 eV,使其可以被 650nm 激光激发,产生活性氧物种。OFeCa-V@GA 的水热合成阶段中产生的 OV 可以将金属离子固定在形成原子相中,为单原子纳米酶的大量制造方法提供了可能。密度泛函理论结果表明,Ca 位可以促进 HO 的吸附,Fe 位可以加速 HO 的解离,从而实现协同催化作用。更重要的是,金属离子的靶向递送可以在肿瘤部位诱导形态转变,导致治疗组件在肿瘤细胞中的高保留率(最高保留率为 36.3%)。因此,这一发现可能为设计和工程高效、高保留率的纳米药物提供了一种巧妙的方案。
J Am Chem Soc. 2024-4-10
Int J Mol Sci. 2025-6-18