Suppr超能文献

重组传染性疫苗将具有内在的包容性,尽管有超强感染的能力。

Recombinant transmissible vaccines will be intrinsically contained despite the ability to superinfect.

机构信息

Department of Biological Sciences, University of Idaho, Moscow, ID, USA.

Department of Mathematics, University of Idaho, Moscow, ID, USA.

出版信息

Expert Rev Vaccines. 2024 Jan-Dec;23(1):294-302. doi: 10.1080/14760584.2024.2320845. Epub 2024 Feb 28.

Abstract

INTRODUCTION

Transmissible vaccines offer a novel approach to suppressing viruses in wildlife populations, with possible applications against viruses that infect humans as zoonoses - Lassa, Ebola, rabies. To ensure safety, current designs propose a recombinant vector platform in which the vector is isolated from the target wildlife population. Because using an endemic vector creates the potential for preexisting immunity to block vaccine transmission, these designs focus on vector viruses capable of superinfection, spreading throughout the host population following vaccination of few individuals.

AREAS COVERED

We present original theoretical arguments that, regardless of its R value, a recombinant vaccine using a superinfecting vector is not expected to expand its active infection coverage when released into a wildlife population that already carries the vector. However, if superinfection occurs at a high rate such that individuals are repeatedly infected throughout their lives, the immunity footprint in the population can be high despite a low incidence of active vaccine infections. Yet we provide reasons that the above expectation is optimistic.

EXPERT OPINION

High vaccine coverage will typically require repeated releases or release into a population lacking the vector, but careful attention to vector choice and vaccine engineering should also help improve transmissible vaccine utility.

摘要

简介

可传播疫苗为抑制野生动物种群中的病毒提供了一种新方法,可能适用于作为人畜共患病感染人类的病毒 - 拉萨热、埃博拉、狂犬病。为了确保安全性,目前的设计方案提出了一种重组载体平台,其中载体与目标野生动物种群隔离。由于使用地方性载体可能会产生预先存在的免疫力,从而阻止疫苗传播,因此这些设计方案专注于能够超级感染的载体病毒,在少数个体接种疫苗后,在整个宿主种群中传播。

涵盖领域

我们提出了原创的理论观点,即无论其 R 值如何,当将使用超级感染载体的重组疫苗释放到已经携带载体的野生动物种群中时,预计不会扩大其活性感染的覆盖范围。然而,如果超级感染以高速率发生,使得个体在其一生中反复感染,那么尽管活性疫苗感染的发病率低,人群中的免疫足迹仍然可以很高。然而,我们提供了一些理由表明上述预期过于乐观。

专家意见

高疫苗覆盖率通常需要重复释放或释放到缺乏载体的人群中,但仔细注意载体选择和疫苗工程也应有助于提高可传播疫苗的效用。

相似文献

1
Recombinant transmissible vaccines will be intrinsically contained despite the ability to superinfect.
Expert Rev Vaccines. 2024 Jan-Dec;23(1):294-302. doi: 10.1080/14760584.2024.2320845. Epub 2024 Feb 28.
2
A little goes a long way: Weak vaccine transmission facilitates oral vaccination campaigns against zoonotic pathogens.
PLoS Negl Trop Dis. 2019 Mar 8;13(3):e0007251. doi: 10.1371/journal.pntd.0007251. eCollection 2019 Mar.
3
Inferring the disruption of rabies circulation in vampire bat populations using a betaherpesvirus-vectored transmissible vaccine.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2216667120. doi: 10.1073/pnas.2216667120. Epub 2023 Mar 6.
4
Immunogenicity and safety of recombinant rabies viruses used for oral vaccination of stray dogs and wildlife.
Zoonoses Public Health. 2009 Aug;56(6-7):262-9. doi: 10.1111/j.1863-2378.2008.01215.x.
5
Longitudinal deep sequencing informs vector selection and future deployment strategies for transmissible vaccines.
PLoS Biol. 2022 Apr 19;20(4):e3001580. doi: 10.1371/journal.pbio.3001580. eCollection 2022 Apr.
6
Rabies vaccine. Developments employing molecular biology methods.
Mol Biotechnol. 1999 Apr;11(2):137-47. doi: 10.1007/BF02915807.
7
Evaluating the promise of recombinant transmissible vaccines.
Vaccine. 2018 Jan 29;36(5):675-682. doi: 10.1016/j.vaccine.2017.12.037. Epub 2017 Dec 24.
8
A novel approach to a rabies vaccine based on a recombinant single-cycle flavivirus vector.
Vaccine. 2017 Dec 14;35(49 Pt B):6898-6904. doi: 10.1016/j.vaccine.2017.08.055. Epub 2017 Sep 9.
10
Poxvirus-vectored vaccines for rabies--a review.
Vaccine. 2009 Nov 27;27(51):7198-201. doi: 10.1016/j.vaccine.2009.09.033.

本文引用的文献

1
Inferring the disruption of rabies circulation in vampire bat populations using a betaherpesvirus-vectored transmissible vaccine.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2216667120. doi: 10.1073/pnas.2216667120. Epub 2023 Mar 6.
2
Determinants of Virus Variation, Evolution, and Host Adaptation.
Pathogens. 2022 Sep 13;11(9):1039. doi: 10.3390/pathogens11091039.
3
Longitudinal deep sequencing informs vector selection and future deployment strategies for transmissible vaccines.
PLoS Biol. 2022 Apr 19;20(4):e3001580. doi: 10.1371/journal.pbio.3001580. eCollection 2022 Apr.
4
Self-spreading vaccines: Base policy on evidence.
Science. 2022 Mar 25;375(6587):1362-1363. doi: 10.1126/science.abo0238. Epub 2022 Mar 24.
5
Quantifying the effectiveness of betaherpesvirus-vectored transmissible vaccines.
Proc Natl Acad Sci U S A. 2022 Jan 25;119(4). doi: 10.1073/pnas.2108610119.
6
Eroding norms over release of self-spreading viruses.
Science. 2022 Jan 7;375(6576):31-33. doi: 10.1126/science.abj5593. Epub 2022 Jan 6.
7
Individuals cannot rely on COVID-19 herd immunity: Durable immunity to viral disease is limited to viruses with obligate viremic spread.
PLoS Pathog. 2021 Apr 26;17(4):e1009509. doi: 10.1371/journal.ppat.1009509. eCollection 2021 Apr.
8
Limited Predictability of Amino Acid Substitutions in Seasonal Influenza Viruses.
Mol Biol Evol. 2021 Jun 25;38(7):2767-2777. doi: 10.1093/molbev/msab065.
9
Safety and security concerns regarding transmissible vaccines.
Nat Ecol Evol. 2021 Apr;5(4):405-406. doi: 10.1038/s41559-021-01394-3.
10
Self-disseminating vaccines to suppress zoonoses.
Nat Ecol Evol. 2020 Sep;4(9):1168-1173. doi: 10.1038/s41559-020-1254-y. Epub 2020 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验