Latvian Biomedical Research and Study Centre.
Institute of Solid-State Physics, University of Latvia.
J Vis Exp. 2024 Feb 2(204). doi: 10.3791/66019.
Extracellular vesicles (EVs) hold immense potential for various biomedical applications, including diagnostics, drug delivery, and regenerative medicine. Nevertheless, the current methodologies for isolating EVs present significant challenges, such as complexity, time consumption, and the need for bulky equipment, which hinders their clinical translation. To address these limitations, we aimed to develop an innovative microfluidic system based on cyclic olefin copolymer-off-stoichiometry thiol-ene (COC-OSTE) for the efficient isolation of EVs from large-volume samples in a continuous manner. By utilizing size and buoyancy-based separation, the technology used in this study achieved a significantly narrower size distribution compared to existing approaches from urine and cell media samples, enabling the targeting of specific EV size fractions in future applications. Our innovative COC-OSTE microfluidic device design, utilizing bifurcated asymmetric flow field-flow fractionation technology, offers a straightforward and continuous EV isolation approach for large-volume samples. Furthermore, the potential for mass manufacturing of this microfluidic device offers scalability and consistency, making it feasible to integrate EV isolation into routine clinical diagnostics and industrial processes, where high consistency and throughput are essential requirements.
细胞外囊泡 (EVs) 在各种生物医学应用中具有巨大的潜力,包括诊断、药物输送和再生医学。然而,目前分离 EVs 的方法存在着显著的挑战,如复杂性、耗时和对大型设备的需求,这阻碍了它们的临床转化。为了解决这些限制,我们旨在开发一种基于环状烯烃共聚物-非化学计量硫醇-烯 (COC-OSTE) 的创新微流控系统,以便能够连续、高效地从大容量样本中分离 EVs。通过利用尺寸和浮力分离,本研究中使用的技术与来自尿液和细胞培养基样本的现有方法相比,实现了更窄的尺寸分布,从而能够针对特定的 EV 尺寸分数进行未来的应用。我们的创新 COC-OSTE 微流控设备设计,利用分叉不对称流场分离技术,为大容量样本提供了一种简单而连续的 EV 分离方法。此外,这种微流控设备具有大规模制造的潜力,具有可扩展性和一致性,使 EV 分离能够集成到常规临床诊断和工业流程中,在这些流程中,高一致性和高通量是必不可少的要求。