Dong Xue, Qu Hang, Sue Andrew C-H, Wang Xin-Chang, Cao Xiao-Yu
State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Science and Technologies of Energy Materials of Fujian Province (IKKEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Acc Chem Res. 2024 Apr 16;57(8):1111-1122. doi: 10.1021/acs.accounts.3c00777. Epub 2024 Feb 19.
ConspectusMolecular polyhedral cages, notable for their enclosed inner cavities, can possess varying degrees of symmetry, spanning from regular Platonic polyhedra to lower symmetry forms that may display chirality. Crafting chiral molecular cages typically involves using building blocks containing stereogenic elements or arranging achiral components in a manner that lacks mirror and inversion symmetries. Achieving precise control over their chirality poses both significance and challenges.In this Account, we present an overview of our research endeavors in the realm of chiral molecular polyhedral cages, drawing inspiration from Buckminster Fuller's "Face-Rotating Polyhedra (FRP)". Mathematically, FRP introduce a unique form of chirality distinguished by a rotating pattern around the center of each face, setting it apart from regular polyhedra.Molecular FRP can be constructed using two types of facial building blocks. The first includes rigid, planar molecules such as truxene and triazatruxene, which exhibit either clockwise or counterclockwise rotations in two dimensions. The second category involves propeller-like molecules, e.g., tetraphenylethylene, 1,2,3,4,5-penta(4-phenylaldehyde)pyrrole, and tridurylborane, displaying dynamic stereochemistry.The synthesis of FRP may potentially yield a diverse array of stereoisomers. Achieving high stereoselectivity becomes feasible through the selection of building blocks with specific substitution patterns and rigidity. Prominent noncovalent repulsive forces within the resulting cages often play a pivotal role in the dynamic covalent assembly process, ultimately leading to the formation of thermodynamically stable FRP products.The capacity to generate a multitude of stereoisomers, combined with the integration of chiral vertices, has facilitated investigations into phenomena such as chiral self-sorting and the "sergeant and soldiers" chiral amplification effect in FRP. Even the inclusion of one chiral vertex significantly impacts the stereochemical configuration of the entire cage. While many facial building blocks establish a stable rotational pattern in FRP, other units, such as tridurylborane, can dynamically transition between and configurations within the cage structures. The kinetic characteristics of such stereolabile FRP can be elucidated through physicochemical investigations.Our research extends beyond the FRP concept to encompass mathematical analysis of these structures. Graph theory, particularly the coloring problem, sheds light on the intricate facial patterns exhibited by various FRP stereoisomers and serves as an efficient tool to facilitate the discovery of novel FRP structures. This approach offers a fresh paradigm for designing and analyzing chiral molecular polyhedral cages, showcasing in our work the synergy between mathematics and molecular design.
综述
分子多面体笼因其封闭的内腔而闻名,可具有不同程度的对称性,范围从规则的柏拉图多面体到可能显示手性的较低对称性形式。构建手性分子笼通常涉及使用含有立体ogenic元素的构建块或以缺乏镜像和反演对称性的方式排列非手性组分。实现对其手性的精确控制既具有重要意义又面临挑战。
在本综述中,我们概述了我们在手性分子多面体笼领域的研究工作,灵感来自巴克敏斯特·富勒的“面旋转多面体(FRP)”。从数学上讲,FRP引入了一种独特的手性形式,其特征是围绕每个面的中心有一个旋转模式,这使其与规则多面体区分开来。
分子FRP可以使用两种类型的面构建块来构建。第一种包括刚性平面分子,如均三苯和三氮杂均三苯,它们在二维中表现出顺时针或逆时针旋转。第二类涉及螺旋桨状分子,例如四苯乙烯、1,2,3,4,5 - 五(4 - 苯甲醛)吡咯和三杜基硼烷,显示出动态立体化学。
FRP的合成可能会产生各种各样的立体异构体。通过选择具有特定取代模式和刚性的构建块,实现高立体选择性变得可行。所得笼内突出的非共价排斥力通常在动态共价组装过程中起关键作用,最终导致热力学稳定的FRP产物的形成。
产生多种立体异构体的能力,结合手性顶点的整合,促进了对手性自分类和FRP中“长官与士兵”手性放大效应等现象的研究。即使包含一个手性顶点也会对整个笼的立体化学构型产生显著影响。虽然许多面构建块在FRP中建立了稳定的旋转模式,但其他单元,如三杜基硼烷,可以在笼结构内动态地在 和 构型之间转变。这种立体不稳定的FRP的动力学特征可以通过物理化学研究来阐明。
我们的研究超越了FRP概念,涵盖了对这些结构的数学分析。图论,特别是着色问题,揭示了各种FRP立体异构体所展示的复杂面模式,并作为促进发现新型FRP结构的有效工具。这种方法为设计和分析手性分子多面体笼提供了一种新的范式,展示了我们工作中数学与分子设计之间的协同作用。