Suppr超能文献

亚组分自组装中的立体化学。

Stereochemistry in subcomponent self-assembly.

机构信息

Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.

出版信息

Acc Chem Res. 2014 Jul 15;47(7):2063-73. doi: 10.1021/ar5000924. Epub 2014 May 2.

Abstract

CONSPECTUS

As Pasteur noted more than 150 years ago, asymmetry exists in matter at all organization levels. Biopolymers such as proteins or DNA adopt one-handed conformations, as a result of the chirality of their constituent building blocks. Even at the level of elementary particles, asymmetry exists due to parity violation in the weak nuclear force. While the origin of homochirality in living systems remains obscure, as does the possibility of its connection with broken symmetries at larger or smaller length scales, its centrality to biomolecular structure is clear: the single-handed forms of bio(macro)molecules interlock in ways that depend upon their handednesses. Dynamic artificial systems, such as helical polymers and other supramolecular structures, have provided a means to study the mechanisms of transmission and amplification of stereochemical information, which are key processes to understand in the context of the origins and functions of biological homochirality. Control over stereochemical information transfer in self-assembled systems will also be crucial for the development of new applications in chiral recognition and separation, asymmetric catalysis, and molecular devices. In this Account, we explore different aspects of stereochemistry encountered during the use of subcomponent self-assembly, whereby complex structures are prepared through the simultaneous formation of dynamic coordinative (N → metal) and covalent (N═C) bonds. This technique provides a useful method to study stereochemical information transfer processes within metal-organic assemblies, which may contain different combinations of fixed (carbon) and labile (metal) stereocenters. We start by discussing how simple subcomponents with fixed stereogenic centers can be incorporated in the organic ligands of mononuclear coordination complexes and communicate stereochemical information to the metal center, resulting in diastereomeric enrichment. Enantiopure subcomponents were then incorporated in self-assembly reactions to control the stereochemistry of increasingly complex architectures. This strategy has also allowed exploration of the degree to which stereochemical information is propagated through tetrahedral frameworks cooperatively, leading to the observation of stereochemical coupling across more than 2 nm between metal stereocenters and the enantioselective synthesis of a face-capped tetrahedron containing no carbon stereocenters via a stereochemical memory effect. Several studies on the communication of stereochemistry between the configurationally flexible metal centers in tetrahedral metal-organic cages have shed light on the factors governing this process, allowing the synthesis of an asymmetric cage, obtained in racemic form, in which all symmetry elements have been broken. Finally, we discuss how stereochemical diversity leads to structural complexity in the structures prepared through subcomponent self-assembly. Initial use of octahedral metal templates with facial stereochemistry in subcomponent self-assembly, which predictably gave rise to structures of tetrahedral symmetry, was extended to meridional metal centers. These lower-symmetry linkages have allowed the assembly of a series of increasingly intricate 3D architectures of varying functionality. The knowledge gained from investigating different aspects of the stereochemistry of metal-templated assemblies thus not only leads to new means of structural control but also opens pathways toward functions such as stereoselective guest binding and transformation.

摘要

概述

正如巴斯德在 150 多年前指出的那样,物质在所有组织层次上都存在不对称性。生物聚合物,如蛋白质或 DNA,由于其组成构建块的手性,采用单手构象。即使在基本粒子的水平上,由于弱核力中的宇称破坏,也存在不对称性。虽然生命系统中同手性的起源仍然不清楚,也不清楚它与更大或更小长度尺度上的对称性破缺的可能性有何联系,但它在手生物分子结构中的中心地位是明确的:生物(大)分子的单手形式以依赖于它们的手性的方式相互锁定。动态人工系统,如螺旋聚合物和其他超分子结构,为研究手性信息传递和放大的机制提供了一种手段,这些机制是理解生物同手性起源和功能的关键过程。在手性识别和分离、不对称催化和分子器件等新应用中,控制自组装系统中立体化学信息的传递也将至关重要。在本报告中,我们探讨了在使用亚组分自组装过程中遇到的不同方面的立体化学,其中通过同时形成动态配位(N→金属)和共价(N═C)键来制备复杂结构。该技术为研究金属有机组装体内部的立体化学信息传递过程提供了一种有用的方法,其中可能包含固定(碳)和不稳定(金属)立体中心的不同组合。我们首先讨论如何将具有固定手性中心的简单亚组分引入单核配位配合物的有机配体中,并将立体化学信息传递给金属中心,从而导致非对映体富集。然后将对映纯亚组分引入自组装反应中,以控制越来越复杂结构的立体化学。该策略还允许探索立体化学信息通过协同四面体框架传播的程度,导致观察到金属立体中心之间超过 2nm 的立体化学偶联,以及通过立体化学记忆效应通过非手性四面体进行对映选择性合成。关于四面体金属有机笼中构型灵活的金属中心之间立体化学的沟通的几项研究揭示了控制该过程的因素,允许合成以无碳立体中心的非对映体形式获得的不对称笼,其中所有对称元素都已被打破。最后,我们讨论了立体化学多样性如何导致通过亚组分自组装制备的结构的结构复杂性。在亚组分自组装中最初使用具有面手性的八面体金属模板,可预测地产生四面体对称性的结构,这一方法已扩展到子午线金属中心。这些较低对称性的键合允许组装一系列功能各异的越来越复杂的 3D 结构。通过研究金属模板组装立体化学的不同方面获得的知识不仅导致了新的结构控制手段,而且还开辟了对映选择性客体结合和转化等功能的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验