Al-Kamal Ahmed K, Hammad Mohaned, Yusuf Ali Md, Angel Steven, Segets Doris, Schulz Christof, Wiggers Hartmut
Institute for Energy and Materials Processes-Reactive Fluids (EMPI-RF), University of Duisburg-Essen, Duisburg, Germany.
Materials Engineering Department, Faculty of Engineering, Mustansiriyah University, Baghdad, Iraq.
Nanotechnology. 2024 Mar 12;35(22). doi: 10.1088/1361-6528/ad2ac7.
In sodium-ion batteries (SIBs), TiOor sodium titanates are discussed as cost-effective anode material. The use of ultrafine TiOparticles overcomes the effect of intrinsically low electronic and ionic conductivity that otherwise limits the electrochemical performance and thus its Na-ion storage capacity. Especially, TiOnanoparticles integrated in a highly conductive, large surface-area, and stable graphene matrix can achieve an exceptional electrochemical rate performance, durability, and increase in capacity. We report the direct and scalable gas-phase synthesis of TiOand graphene and their subsequent self-assembly to produce TiO/graphene nanocomposites (TiO/Gr). Transmission electron microscopy shows that the TiOnanoparticles are uniformly distributed on the surface of the graphene nanosheets. TiO/Gr nanocomposites with graphene loadings of 20 and 30 wt% were tested as anode in SIBs. With the outstanding electronic conductivity enhancement and a synergistic Na-ion storage effect at the interface of TiOnanoparticles and graphene, nanocomposites with 30 wt% graphene exhibited particularly good electrochemical performance with a reversible capacity of 281 mAh gat 0.1 C, compared to pristine TiOnanoparticles (155 mAh g). Moreover, the composite showed excellent high-rate performance of 158 mAh gat 20 C and a reversible capacity of 154 mAh gafter 500 cycles at 10 C. Cyclic voltammetry showed that the Na-ion storage is dominated by surface and TiO/Gr interface processes rather than slow, diffusion-controlled intercalation, explaining its outstanding rate performance. The synthesis route of these high-performing nanocomposites provides a highly promising strategy for the scalable production of advanced nanomaterials for SIBs.
在钠离子电池(SIBs)中,二氧化钛或钛酸钠被视为具有成本效益的负极材料。使用超细二氧化钛颗粒可克服其本身较低的电子和离子电导率的影响,否则这会限制其电化学性能,进而限制其钠离子存储容量。特别是,集成在高导电性、大表面积且稳定的石墨烯基体中的二氧化钛纳米颗粒可实现卓越的电化学倍率性能、耐久性和容量增加。我们报道了二氧化钛和石墨烯的直接且可扩展的气相合成及其随后的自组装,以制备二氧化钛/石墨烯纳米复合材料(TiO₂/Gr)。透射电子显微镜显示,二氧化钛纳米颗粒均匀分布在石墨烯纳米片的表面。测试了石墨烯负载量为20 wt%和30 wt%的TiO₂/Gr纳米复合材料作为SIBs负极的性能。由于在二氧化钛纳米颗粒与石墨烯的界面处具有出色的电子导电性增强和协同的钠离子存储效应,30 wt%石墨烯的纳米复合材料表现出特别良好的电化学性能,在0.1 C时可逆容量为281 mAh g,相比原始二氧化钛颗粒(155 mAh g)。此外,该复合材料在20 C时表现出158 mAh g的优异高倍率性能,在10 C下循环500次后可逆容量为154 mAh g。循环伏安法表明,钠离子存储主要由表面和TiO₂/Gr界面过程主导,而非缓慢的、扩散控制的嵌入过程,这解释了其出色的倍率性能。这些高性能纳米复合材料的合成路线为可扩展生产用于SIBs的先进纳米材料提供了极具前景的策略。