Suppr超能文献

Maquet 和 Bio-Medicus 多阶段引流管在动静脉体外膜肺氧合期间的流量特征。

Flow characterization of Maquet and Bio-Medicus multi-stage drainage cannulae during venoarterial extracorporeal membrane oxygenation.

机构信息

Cardio-Respiratory Engineering and Technology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, 631 Blackburn Road, Clayton, VIC, Australia.

Cardio-Respiratory Engineering and Technology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, 631 Blackburn Road, Clayton, VIC, Australia.

出版信息

Comput Biol Med. 2024 Mar;171:108135. doi: 10.1016/j.compbiomed.2024.108135. Epub 2024 Feb 16.

Abstract

BACKGROUND

Drainage cannulae extract blood from a patient during venoarterial extracorporeal membrane oxygenation (VA ECMO), a treatment that temporarily supports patients undergoing severe heart and/or lung dysfunction. Currently, the two most commonly used multi-stage drainage cannulae are manufactured by Maquet and Bio-Medicus, but their designs vary in many aspects which impacts the generated flow dynamics. Therefore, this study aimed to use computational fluid dynamics (CFD) to explore the flow characteristics of the aforementioned cannulae and their impact on complications such as thrombosis.

METHODS

The Maquet and Bio-Medicus cannulae were 3D modelled within a patient-specific geometry of the venous vasculature taken from a computed tomography scan of a patient undergoing VA ECMO. A drainage flow rate of 4 L/min was assigned to each cannula. Lastly, a stress blended eddy simulation turbulence model was employed to resolve bulk flow turbulence.

RESULTS

The proximal row of side holes in both cannulae generated high intensity counter-rotating vortices, thus generating supraphysiological shear. These proximal rows were also responsible for the majority of flow extraction in both cannulae (>1.6 L/min). Despite identical simulation settings, each cannulae had differing impacts on global flow dynamics. For instance, the Bio-Medicus model produced a total stagnant blood volume of 25.6 ml, compared to 17.8 ml the Maquet cannula, thereby increasing the risk of thrombosis.

CONCLUSIONS

Overall, our results demonstrate that differences in design clearly impact flow dynamics and risk of complications. Therefore, further work in optimizing cannula design may be beneficial to prevent harmful flow characteristics.

摘要

背景

在静脉-动脉体外膜肺氧合(VA ECMO)期间,引流管从患者体内抽取血液,VA ECMO 是一种暂时支持严重心脏和/或肺部功能障碍患者的治疗方法。目前,最常使用的两种多阶段引流管由 Maquet 和 Bio-Medicus 制造,但它们的设计在许多方面存在差异,这会影响产生的流动动力学。因此,本研究旨在使用计算流体动力学(CFD)来探索上述引流管的流动特性及其对血栓形成等并发症的影响。

方法

在从接受 VA ECMO 的患者的计算机断层扫描中获取的静脉血管的患者特定几何形状内,对 Maquet 和 Bio-Medicus 引流管进行了 3D 建模。每个引流管分配 4 L/min 的引流流速。最后,采用应力混合涡模拟湍流模型来解决体流湍流。

结果

两种引流管的近端侧孔排产生高强度反向旋转涡旋,从而产生超生理剪切。这些近端排还负责两种引流管中大部分的流量提取(>1.6 L/min)。尽管模拟设置相同,但每种引流管对全局流动动力学的影响都不同。例如,Bio-Medicus 模型产生的总停滞血液量为 25.6ml,而 Maquet 引流管为 17.8ml,从而增加了血栓形成的风险。

结论

总的来说,我们的结果表明,设计差异明显影响流动动力学和并发症风险。因此,进一步优化引流管设计的工作可能有助于防止有害的流动特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验