Suppr超能文献

机器学习分析女性母乳喂养与代谢综合征之间的关联。

Machine learning analysis for the association between breast feeding and metabolic syndrome in women.

作者信息

Lee Jue Seong, Choi Eun-Saem, Lee Hwasun, Son Serhim, Lee Kwang-Sig, Ahn Ki Hoon

机构信息

Department of Pediatrics, Korea University College of Medicine, Korea University Anam Hospital, Seoul, South Korea.

Department of Obstetrics and Gynecology, Korea University College of Medicine, Korea University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea.

出版信息

Sci Rep. 2024 Feb 20;14(1):4138. doi: 10.1038/s41598-024-53137-6.

Abstract

This cross-sectional study aimed to develop and validate population-based machine learning models for examining the association between breastfeeding and metabolic syndrome in women. The artificial neural network, the decision tree, logistic regression, the Naïve Bayes, the random forest and the support vector machine were developed and validated to predict metabolic syndrome in women. Data came from 30,204 women, who aged 20 years or more and participated in the Korean National Health and Nutrition Examination Surveys 2010-2019. The dependent variable was metabolic syndrome. The 86 independent variables included demographic/socioeconomic determinants, cardiovascular disease, breastfeeding duration and other medical/obstetric information. The random forest had the best performance in terms of the area under the receiver-operating-characteristic curve, e.g., 90.7%. According to random forest variable importance, the top predictors of metabolic syndrome included body mass index (0.1032), medication for hypertension (0.0552), hypertension (0.0499), cardiovascular disease (0.0453), age (0.0437) and breastfeeding duration (0.0191). Breastfeeding duration is a major predictor of metabolic syndrome for women together with body mass index, diagnosis and medication for hypertension, cardiovascular disease and age.

摘要

这项横断面研究旨在开发并验证基于人群的机器学习模型,以检验女性母乳喂养与代谢综合征之间的关联。研究开发并验证了人工神经网络、决策树、逻辑回归、朴素贝叶斯、随机森林和支持向量机,用于预测女性的代谢综合征。数据来自30204名年龄在20岁及以上、参与了2010 - 2019年韩国国家健康与营养检查调查的女性。因变量是代谢综合征。86个自变量包括人口统计学/社会经济决定因素、心血管疾病、母乳喂养持续时间以及其他医学/产科信息。就受试者工作特征曲线下面积而言,随机森林表现最佳,例如为90.7%。根据随机森林变量重要性,代谢综合征的首要预测因素包括体重指数(0.1032)、高血压用药(0.0552)、高血压(0.0499)、心血管疾病(0.0453)、年龄(0.0437)和母乳喂养持续时间(0.0191)。母乳喂养持续时间与体重指数、高血压诊断及用药、心血管疾病和年龄一起,是女性代谢综合征的主要预测因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d8/10876622/8b251301ef31/41598_2024_53137_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验