Suppr超能文献

机器学习方法预测 50 岁以上人群的慢性下腰痛

Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years.

机构信息

Department of Anesthesiology and Pain Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea.

出版信息

Medicina (Kaunas). 2021 Nov 11;57(11):1230. doi: 10.3390/medicina57111230.

Abstract

: Chronic lower back pain (LBP) is a common clinical disorder. The early identification of patients who will develop chronic LBP would help develop preventive measures and treatment. We aimed to develop machine learning models that can accurately predict the risk of chronic LBP. : Data from the Sixth Korea National Health and Nutrition Examination Survey conducted in 2014 and 2015 (KNHANES VI-2, 3) were screened for selecting patients with chronic LBP. LBP lasting >30 days in the past 3 months was defined as chronic LBP in the survey. The following classification models with machine learning algorithms were developed and validated to predict chronic LBP: logistic regression (LR), k-nearest neighbors (KNN), naïve Bayes (NB), decision tree (DT), random forest (RF), gradient boosting machine (GBM), support vector machine (SVM), and artificial neural network (ANN). The performance of these models was compared with respect to the area under the receiver operating characteristic curve (AUROC). : A total of 6119 patients were analyzed in this study, of which 1394 had LBP. The feature selected data consisted of 13 variables. The LR, KNN, NB, DT, RF, GBM, SVM, and ANN models showed performances (in terms of AUROCs) of 0.656, 0.656, 0.712, 0.671, 0.699, 0.660, 0.707, and 0.716, respectively, with ten-fold cross-validation. : In this study, the ANN model was identified as the best machine learning classification model for predicting the occurrence of chronic LBP. Therefore, machine learning could be effectively applied in the identification of populations at high risk of chronic LBP.

摘要

慢性下腰痛(LBP)是一种常见的临床疾病。早期识别出将发展为慢性 LBP 的患者有助于制定预防措施和治疗方案。我们旨在开发能够准确预测慢性 LBP 风险的机器学习模型。

在 2014 年和 2015 年进行的第六次韩国国家健康和营养检查调查(KNHANES VI-2,3)的数据中筛选出患有慢性 LBP 的患者。调查中,过去 3 个月内持续 >30 天的 LBP 定义为慢性 LBP。使用机器学习算法开发并验证了以下分类模型来预测慢性 LBP:逻辑回归(LR)、k-最近邻(KNN)、朴素贝叶斯(NB)、决策树(DT)、随机森林(RF)、梯度提升机(GBM)、支持向量机(SVM)和人工神经网络(ANN)。比较了这些模型的性能,以评估其接受者操作特征曲线下的面积(AUROC)。

本研究共分析了 6119 名患者,其中 1394 名患有 LBP。特征选择数据由 13 个变量组成。LR、KNN、NB、DT、RF、GBM、SVM 和 ANN 模型在十折交叉验证中的表现(AUROCs)分别为 0.656、0.656、0.712、0.671、0.699、0.660、0.707 和 0.716。

在本研究中,ANN 模型被确定为预测慢性 LBP 发生的最佳机器学习分类模型。因此,机器学习可以有效地应用于识别慢性 LBP 高危人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ec5/8618953/d53658e6fc86/medicina-57-01230-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验