Suppr超能文献

通过自组装制备嵌合纳米体修饰的脂质体。

Chimeric nanobody-decorated liposomes by self-assembly.

机构信息

The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA.

Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh.

出版信息

Nat Nanotechnol. 2024 Jun;19(6):818-824. doi: 10.1038/s41565-024-01620-6. Epub 2024 Feb 19.

Abstract

Liposomes as drug vehicles have advantages, such as payload protection, tunable carrying capacity and improved biodistribution. However, due to the dysfunction of targeting moieties and payload loss during preparation, immunoliposomes have yet to be favoured in commercial manufacturing. Here we report a chemical modification-free biophysical approach for producing immunoliposomes in one step through the self-assembly of a chimeric nanobody (cNB) into liposome bilayers. cNB consists of a nanobody against human epidermal growth factor receptor 2 (HER2), a flexible peptide linker and a hydrophobic single transmembrane domain. We determined that 64% of therapeutic compounds can be encapsulated into 100-nm liposomes, and up to 2,500 cNBs can be anchored on liposomal membranes without steric hindrance under facile conditions. Subsequently, we demonstrate that drug-loaded immunoliposomes increase cytotoxicity on HER2-overexpressing cancer cell lines by 10- to 20-fold, inhibit the growth of xenograft tumours by 3.4-fold and improve survival by more than twofold.

摘要

脂质体作为药物载体具有许多优点,例如负载物保护、可调节的载物能力和改善的生物分布。然而,由于靶向部分的功能障碍和在制备过程中负载物的损失,免疫脂质体尚未在商业制造中受到青睐。在这里,我们报告了一种无需化学修饰的生物物理方法,通过将嵌合纳米体(cNB)自组装成脂质体双层一步法制备免疫脂质体。cNB 由针对人表皮生长因子受体 2(HER2)的纳米体、柔性肽接头和疏水性单跨膜域组成。我们确定,64%的治疗化合物可以封装到 100nm 的脂质体中,并且在简便的条件下,多达 2500 个 cNB 可以在没有空间位阻的情况下锚定在脂质体膜上。随后,我们证明载药免疫脂质体使过表达 HER2 的癌细胞系的细胞毒性增加 10 至 20 倍,抑制异种移植瘤的生长 3.4 倍,并使存活率提高两倍以上。

相似文献

1
Chimeric nanobody-decorated liposomes by self-assembly.
Nat Nanotechnol. 2024 Jun;19(6):818-824. doi: 10.1038/s41565-024-01620-6. Epub 2024 Feb 19.
2
Tumor targeting using anti-her2 immunoliposomes.
J Control Release. 2001 Jul 6;74(1-3):95-113. doi: 10.1016/s0168-3659(01)00315-7.
5
Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells.
Pharm Res. 2007 Dec;24(12):2402-11. doi: 10.1007/s11095-007-9425-y. Epub 2007 Sep 9.
7
Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy.
Eur J Pharm Biopharm. 2017 Jun;115:159-167. doi: 10.1016/j.ejpb.2017.02.020. Epub 2017 Feb 28.

引用本文的文献

1
Antibody-functionalized iron-based nanoplatform for ferroptosis-augmented targeted therapy of HER2-positive breast cancer.
Bioact Mater. 2025 Jun 22;52:702-718. doi: 10.1016/j.bioactmat.2025.06.034. eCollection 2025 Oct.
2
Emerging Targeted Delivery Strategies of Nanosystems for Ischemic Stroke Treatment.
Int J Nanomedicine. 2025 Jun 24;20:8143-8171. doi: 10.2147/IJN.S519328. eCollection 2025.
4
How Traditional Chinese Medicine Can Play a Role In Nanomedicine? A Comprehensive Review of the Literature.
Int J Nanomedicine. 2025 May 20;20:6289-6315. doi: 10.2147/IJN.S518610. eCollection 2025.
5
Nanobodies targeting the tumor microenvironment and their formulation as nanomedicines.
Mol Cancer. 2025 Mar 4;24(1):65. doi: 10.1186/s12943-025-02270-5.
6
Bioengineering strategies targeting angiogenesis: Innovative solutions for osteonecrosis of the femoral head.
J Tissue Eng. 2025 Jan 24;16:20417314241310541. doi: 10.1177/20417314241310541. eCollection 2025 Jan-Dec.
8
Rational strategies for improving the efficiency of design and discovery of nanomedicines.
Nat Commun. 2024 Nov 18;15(1):9990. doi: 10.1038/s41467-024-54265-3.
9
Nanocarriers for intracellular delivery of proteins in biomedical applications: strategies and recent advances.
J Nanobiotechnology. 2024 Nov 10;22(1):688. doi: 10.1186/s12951-024-02969-5.

本文引用的文献

1
The Impact of Nanobody Density on the Targeting Efficiency of PEGylated Liposomes.
Int J Mol Sci. 2022 Nov 29;23(23):14974. doi: 10.3390/ijms232314974.
2
3
DNA-induced fusion between lipid domains of peptide-lipid hybrid vesicles.
Chem Commun (Camb). 2022 Oct 20;58(84):11799-11802. doi: 10.1039/d2cc03997d.
4
gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS.
J Chem Theory Comput. 2021 Oct 12;17(10):6281-6291. doi: 10.1021/acs.jctc.1c00645. Epub 2021 Sep 29.
6
Targeted liposomal drug delivery: a nanoscience and biophysical perspective.
Nanoscale Horiz. 2021 Feb 1;6(2):78-94. doi: 10.1039/d0nh00605j. Epub 2021 Jan 5.
7
Engineering precision nanoparticles for drug delivery.
Nat Rev Drug Discov. 2021 Feb;20(2):101-124. doi: 10.1038/s41573-020-0090-8. Epub 2020 Dec 4.
8
Intracellular Distribution of Lipids and Encapsulated Model Drugs from Cationic Liposomes with Different Uptake Pathways.
Int J Nanomedicine. 2020 Oct 29;15:8401-8409. doi: 10.2147/IJN.S267638. eCollection 2020.
10
Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives.
Angew Chem Int Ed Engl. 2021 Feb 1;60(5):2221-2231. doi: 10.1002/anie.202003563. Epub 2020 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验