Suppr超能文献

相似文献

1
Genetic heterogeneity in hereditary hearing loss: Potential role of kinociliary protein TOGARAM2.
Eur J Hum Genet. 2024 Jun;32(6):639-646. doi: 10.1038/s41431-024-01562-6. Epub 2024 Feb 19.
4
Recurrent de novo WFS1 pathogenic variants in Chinese sporadic patients with nonsyndromic sensorineural hearing loss.
Mol Genet Genomic Med. 2020 Aug;8(8):e1367. doi: 10.1002/mgg3.1367. Epub 2020 Jun 22.
6
Novel homozygous variants in the TMC1 and CDH23 genes cause autosomal recessive nonsyndromic hearing loss.
Mol Genet Genomic Med. 2020 Dec;8(12):e1550. doi: 10.1002/mgg3.1550. Epub 2020 Nov 18.
8
Novel mutations confirm that COL11A2 is responsible for autosomal recessive non-syndromic hearing loss DFNB53.
Mol Genet Genomics. 2015 Aug;290(4):1327-34. doi: 10.1007/s00438-015-0995-9. Epub 2015 Jan 30.
9
A Frameshift Variant in ANKRD24 Implicates Its Role in Human Non-Syndromic Hearing Loss.
Clin Genet. 2025 Feb;107(2):214-218. doi: 10.1111/cge.14635. Epub 2024 Oct 21.
10
Identification of Hearing Loss-Associated Variants of , , and in Pakistani Families.
Biomed Res Int. 2021 Apr 24;2021:5584788. doi: 10.1155/2021/5584788. eCollection 2021.

引用本文的文献

1
Looking back at 2024 in the European Journal of Human Genetics.
Eur J Hum Genet. 2025 Mar;33(2):141-143. doi: 10.1038/s41431-025-01800-5.
2
Human organoids for rapid validation of gene variants linked to cochlear malformations.
Hum Genet. 2025 Apr;144(4):375-389. doi: 10.1007/s00439-024-02723-9. Epub 2025 Jan 9.
3
Togaram1 is expressed in the neural tube and its absence causes neural tube closure defects.
HGG Adv. 2025 Jan 9;6(1):100363. doi: 10.1016/j.xhgg.2024.100363. Epub 2024 Oct 9.
4
Human Organoids for Rapid Validation of Gene Variants Linked to Cochlear Malformations.
Res Sq. 2024 Jun 11:rs.3.rs-4474071. doi: 10.21203/rs.3.rs-4474071/v1.

本文引用的文献

1
Accurate proteome-wide missense variant effect prediction with AlphaMissense.
Science. 2023 Sep 22;381(6664):eadg7492. doi: 10.1126/science.adg7492.
2
Deep structured learning for variant prioritization in Mendelian diseases.
Nat Commun. 2023 Jul 13;14(1):4167. doi: 10.1038/s41467-023-39306-7.
3
Genome sequencing identifies coding and non-coding variants for non-syndromic hearing loss.
J Hum Genet. 2023 Oct;68(10):657-669. doi: 10.1038/s10038-023-01159-9. Epub 2023 May 22.
4
Assessing variants of uncertain significance implicated in hearing loss using a comprehensive deafness proteome.
Hum Genet. 2023 Jun;142(6):819-834. doi: 10.1007/s00439-023-02559-9. Epub 2023 Apr 22.
5
Inference of CRISPR Edits from Sanger Trace Data.
CRISPR J. 2022 Feb;5(1):123-130. doi: 10.1089/crispr.2021.0113. Epub 2022 Feb 2.
6
The short flagella 1 (SHF1) gene in encodes a Crescerin TOG-domain protein required for late stages of flagellar growth.
Mol Biol Cell. 2022 Feb 1;33(2):ar12. doi: 10.1091/mbc.E21-09-0472. Epub 2021 Nov 24.
7
Human deafness-associated variants alter the dynamics of key molecules in hair cell stereocilia F-actin cores.
Hum Genet. 2022 Apr;141(3-4):363-382. doi: 10.1007/s00439-021-02304-0. Epub 2021 Jul 7.
8
Fitting a naturally scaled point system to the ACMG/AMP variant classification guidelines.
Hum Mutat. 2020 Oct;41(10):1734-1737. doi: 10.1002/humu.24088. Epub 2020 Aug 30.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验