Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143.
Mol Biol Cell. 2022 Feb 1;33(2):ar12. doi: 10.1091/mbc.E21-09-0472. Epub 2021 Nov 24.
Length control of flagella represents a simple and tractable system to investigate the dynamics of organelle size. Models for flagellar length control in the model organism have focused on the length dependence of the intraflagellar transport (IFT) system, which manages the delivery and removal of axonemal subunits at the tip of the flagella. One of these cargoes, tubulin, is the major axonemal subunit, and its frequency of arrival at the tip plays a central role in size control models. However, the mechanisms determining tubulin dynamics at the tip are still poorly understood. We discovered a loss-of-function mutation that leads to shortened flagella and found that this was an allele of a previously described gene, SHF1, whose molecular identity had not been determined. We found that SHF1 encodes a orthologue of Crescerin, previously identified as a cilia-specific TOG-domain array protein that can bind tubulin via its TOG domains and increase tubulin polymerization rates. In this mutant, flagellar regeneration occurs with the same initial kinetics as in wild-type cells but plateaus at a shorter length. Using a computational model in which the flagellar microtubules are represented by a differential equation for flagellar length combined with a stochastic model for cytoplasmic microtubule dynamics, we found that our experimental results are best described by a model in which Crescerin/SHF1 binds tubulin dimers in the cytoplasm and transports them into the flagellum. We suggest that this TOG-domain protein is necessary to efficiently and preemptively increase intraflagella tubulin levels to offset decreasing IFT cargo at the tip as flagellar assembly progresses.
鞭毛长度控制代表了一个简单而易于处理的系统,可以用来研究细胞器大小的动力学。模型生物中鞭毛长度控制的模型主要集中在鞭毛内运输(IFT)系统的长度依赖性上,该系统负责在鞭毛的尖端输送和去除轴突亚单位。这些货物之一是微管蛋白,是主要的轴突亚单位,其在尖端到达的频率在大小控制模型中起着核心作用。然而,决定微管蛋白在尖端动力学的机制仍然知之甚少。我们发现了一个导致鞭毛缩短的功能丧失突变,并且发现这是一个先前描述的基因 SHF1 的等位基因,其分子身份尚未确定。我们发现 SHF1 编码 Crescerin 的同源物,Crescerin 先前被鉴定为一种纤毛特异性 TOG 结构域阵列蛋白,它可以通过其 TOG 结构域结合微管蛋白并增加微管蛋白聚合速率。在这个突变体中,鞭毛再生的初始动力学与野生型细胞相同,但在较短的长度处达到平台期。使用一个计算模型,其中鞭毛微管由一个关于鞭毛长度的微分方程和一个细胞质微管动力学的随机模型来表示,我们发现我们的实验结果最好用一个模型来描述,在这个模型中,Crescerin/SHF1 在细胞质中结合微管蛋白二聚体,并将它们运输到鞭毛中。我们认为,这种 TOG 结构域蛋白是必需的,以有效地和先发制人的方式增加鞭毛内的微管蛋白水平,以抵消随着鞭毛组装的进行,尖端 IFT 货物的减少。