Suppr超能文献

利用数据平衡、可解释机器学习和匹配分子对分析改进的PARP-1抑制定量构效关系模型。

Improved QSAR models for PARP-1 inhibition using data balancing, interpretable machine learning, and matched molecular pair analysis.

作者信息

Gomatam Anish, Hirlekar Bhakti Umesh, Singh Krishan Dev, Murty Upadhyayula Suryanarayana, Dixit Vaibhav A

机构信息

Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, (NIPER Guwahati), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Dist: Kamrup, P.O.: Changsari, Guwahati, Assam, 781101, India.

出版信息

Mol Divers. 2024 Aug;28(4):2135-2152. doi: 10.1007/s11030-024-10809-9. Epub 2024 Feb 20.

Abstract

The poly (ADP-ribose) polymerase-1 (PARP-1) enzyme is an important target in the treatment of breast cancer. Currently, treatment options include the drugs Olaparib, Niraparib, Rucaparib, and Talazoparib; however, these drugs can cause severe side effects including hematological toxicity and cardiotoxicity. Although in silico models for the prediction of PARP-1 activity have been developed, the drawbacks of these models include low specificity, a narrow applicability domain, and a lack of interpretability. To address these issues, a comprehensive machine learning (ML)-based quantitative structure-activity relationship (QSAR) approach for the informed prediction of PARP-1 activity is presented. Classification models built using the Synthetic Minority Oversampling Technique (SMOTE) for data balancing gave robust and predictive models based on the K-nearest neighbor algorithm (accuracy 0.86, sensitivity 0.88, specificity 0.80). Regression models were built on structurally congeneric datasets, with the models for the phthalazinone class and fused cyclic compounds giving the best performance. In accordance with the Organization for Economic Cooperation and Development (OECD) guidelines, a mechanistic interpretation is proposed using the Shapley Additive Explanations (SHAP) to identify the important topological features to differentiate between PARP-1 actives and inactives. Moreover, an analysis of the PARP-1 dataset revealed the prevalence of activity cliffs, which possibly negatively impacts the model's predictive performance. Finally, a set of chemical transformation rules were extracted using the matched molecular pair analysis (MMPA) which provided mechanistic insights and can guide medicinal chemists in the design of novel PARP-1 inhibitors.

摘要

聚(ADP - 核糖)聚合酶 -1(PARP -1)酶是乳腺癌治疗中的一个重要靶点。目前,治疗选择包括奥拉帕利、尼拉帕利、鲁卡帕利和他拉唑帕利等药物;然而,这些药物会引起严重的副作用,包括血液毒性和心脏毒性。尽管已经开发了用于预测PARP -1活性的计算机模拟模型,但这些模型的缺点包括特异性低、适用范围窄以及缺乏可解释性。为了解决这些问题,本文提出了一种基于综合机器学习(ML)的定量构效关系(QSAR)方法,用于明智地预测PARP -1活性。使用合成少数类过采样技术(SMOTE)进行数据平衡构建的分类模型,基于K近邻算法给出了稳健且具有预测性的模型(准确率0.86,灵敏度0.88,特异性0.80)。回归模型是在结构同类数据集上构建的,其中酞嗪酮类和稠环化合物的模型表现最佳。根据经济合作与发展组织(OECD)的指导方针,提出了一种使用夏普利值附加解释(SHAP)的机理解释,以识别区分PARP -1活性和非活性的重要拓扑特征。此外,对PARP -1数据集的分析揭示了活性悬崖的普遍性,这可能对模型的预测性能产生负面影响。最后,使用匹配分子对分析(MMPA)提取了一组化学转化规则,该分析提供了机理解释,并可指导药物化学家设计新型PARP -1抑制剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验