Systems Modeling and Translational Biology, Computational Sciences, GSK, Collegeville, Pennsylvania 19426, United States.
Molecular Design, Computational Sciences, GSK, Collegeville, Pennsylvania 19426, United States.
J Med Chem. 2024 Mar 14;67(5):3727-3740. doi: 10.1021/acs.jmedchem.3c02169. Epub 2024 Feb 20.
While poor translatability of preclinical efficacy models can be responsible for clinical phase II failures, misdefinition of the optimal PK properties required to achieve therapeutic efficacy can also be a contributing factor. In the present work, the pharmacological dependency of PK end points in driving efficacy is demonstrated for six common pharmacological processes via model-based analysis. The analysis shows that the response is driven by multiple pharmacology-specific PK end points that change with how the response is defined. Moreover, the results demonstrate that the most important chemical structural features influencing response are specific to both target and downstream pharmacology, meaning the design and screening criteria must be defined uniquely for each target and corresponding pharmacology. The model-based virtual exploration of PK/PD relationships presented in this work offers one approach to identify target pharmacology-specific PK drivers and the associated potency-ADME space early in discovery to increase the probability of success and, ultimately, clinical attrition.
虽然临床前疗效模型的翻译质量较差可能是导致临床二期失败的原因之一,但未能正确定义达到治疗效果所需的最佳 PK 特性也可能是一个促成因素。在本工作中,通过基于模型的分析,证明了六种常见的药理学过程中 PK 终点对疗效的药理学依赖性。分析表明,反应由多个特定于药理学的 PK 终点驱动,这些终点会随着反应定义的变化而变化。此外,结果表明,影响反应的最重要的化学结构特征因目标和下游药理学而异,这意味着设计和筛选标准必须针对每个目标和相应的药理学进行独特定义。本文介绍的基于模型的 PK/PD 关系虚拟探索提供了一种方法,可以在发现早期识别目标药理学特异性 PK 驱动因素和相关的效力-ADME 空间,从而提高成功的概率,并最终降低临床淘汰率。