Suppr超能文献

对接受厄洛替尼治疗的非小细胞肺癌患者肿瘤动态和耐药性发展的定量建模。

Quantitative modeling of tumor dynamics and development of drug resistance in non-small cell lung cancer patients treated with erlotinib.

机构信息

Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands.

Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2024 Apr;13(4):612-623. doi: 10.1002/psp4.13105. Epub 2024 Feb 20.

Abstract

Insight into the development of treatment resistance can support the optimization of anticancer treatments. This study aims to characterize the tumor dynamics and development of drug resistance in patients with non-small cell lung cancer treated with erlotinib, and investigate the relationship between baseline circulating tumor DNA (ctDNA) data and tumor dynamics. Data obtained for the analysis included (1) intensively sampled erlotinib concentrations from 29 patients from two previous pharmacokinetic (PK) studies, and (2) tumor sizes, ctDNA measurements, and sparsely sampled erlotinib concentrations from 18 patients from the START-TKI study. A two-compartment population PK model was first developed which well-described the PK data. The PK model was subsequently applied to investigate the exposure-tumor dynamics relationship. To characterize the tumor dynamics, models accounting for intra-tumor heterogeneity and acquired resistance with or without primary resistance were investigated. Eventually, the model assumed acquired resistance only resulted in an adequate fit. Additionally, models with or without exposure-dependent treatment effect were explored, and no significant exposure-response relationship for erlotinib was identified within the observed exposure range. Subsequently, the correlation of baseline ctDNA data on EGFR and TP53 variants with tumor dynamics' parameters was explored. The analysis indicated that higher baseline plasma EGFR mutation levels correlated with increased tumor growth rates, and the inclusion of ctDNA measurements improved model fit. This result suggests that quantitative ctDNA measurements at baseline have the potential to be a predictor of anticancer treatment response. The developed model can potentially be applied to design optimal treatment regimens that better overcome resistance.

摘要

深入了解治疗耐药性的发展可以支持优化抗癌治疗。本研究旨在描述接受厄洛替尼治疗的非小细胞肺癌患者的肿瘤动力学和耐药性发展,并探讨基线循环肿瘤 DNA(ctDNA)数据与肿瘤动力学之间的关系。用于分析的数据包括:(1)来自两项先前药代动力学(PK)研究的 29 名患者的密集采样厄洛替尼浓度,以及(2)来自 START-TKI 研究的 18 名患者的肿瘤大小、ctDNA 测量值和稀疏采样厄洛替尼浓度。首先开发了一个两室人群 PK 模型,该模型很好地描述了 PK 数据。随后,该 PK 模型被应用于研究暴露与肿瘤动力学的关系。为了描述肿瘤动力学,研究了考虑肿瘤内异质性和获得性耐药的模型,包括有无原发性耐药。最终,模型假设仅获得性耐药会导致适当的拟合。此外,还研究了具有或不具有暴露依赖性治疗效果的模型,并且在观察到的暴露范围内,未发现厄洛替尼的暴露反应关系具有统计学意义。随后,探索了基线 ctDNA 数据与 EGFR 和 TP53 变异体与肿瘤动力学参数的相关性。分析表明,较高的基线血浆 EGFR 突变水平与肿瘤生长速率增加相关,并且 ctDNA 测量值的纳入改善了模型拟合度。这一结果表明,基线时定量 ctDNA 测量值有可能成为抗癌治疗反应的预测因子。所开发的模型有可能应用于设计更好地克服耐药性的最佳治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/315e/11015077/52456037dbad/PSP4-13-612-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验