National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
Wenzhou Medical University, Wenzhou, China.
Graefes Arch Clin Exp Ophthalmol. 2024 Jul;262(7):2329-2336. doi: 10.1007/s00417-024-06408-x. Epub 2024 Feb 20.
This study aims to assess the accuracy of three parameters (white-to-white distance [WTW], angle-to-angle [ATA], and sulcus-to-sulcus [STS]) in predicting postoperative vault and to formulate an optimized predictive model.
In this retrospective study, a cohort of 465 patients (comprising 769 eyes) who underwent the implantation of the V4c implantable Collamer lens with a central port (ICL) for myopia correction was examined. Least absolute shrinkage and selection operator (LASSO) regression and classification models were used to predict postoperative vault. The influences of WTW, ATA, and STS on predicting the postoperative vault and ICL size were analyzed and compared.
The dataset was randomly divided into training (80%) and test (20%) sets, with no significant differences observed between them. The screened variables included only seven variables which conferred the largest signal in the model, namely, lens thickness (LT, estimated coefficients for logistic least absolute shrinkage of -0.20), STS (-0.04), size (0.08), flat K (-0.006), anterior chamber depth (0.15), spherical error (-0.006), and cylindrical error (-0.0008). The optimal prediction model depended on STS (R=0.419, RMSE=0.139), whereas the least effective prediction model relied on WTW (R=0.395, RMSE=0.142). In the classified prediction models of the vault, classification prediction of the vault based on STS exhibited superior accuracy compared to ATA or WTW.
This study compared the capabilities of WTW, ATA, and STS in predicting postoperative vault, demonstrating that STS exhibits a stronger correlation than the other two parameters.
本研究旨在评估三个参数(白对白距离[WTW]、角对角[ATA]和嵴对嵴[STS])在预测术后拱高方面的准确性,并制定一个优化的预测模型。
本回顾性研究共纳入 465 例(769 只眼)接受可植入式 Collamer 透镜(V4c)中央孔(ICL)植入矫正近视的患者。采用最小绝对收缩和选择算子(LASSO)回归和分类模型预测术后拱高。分析和比较了 WTW、ATA 和 STS 对预测术后拱高和 ICL 大小的影响。
数据集被随机分为训练集(80%)和测试集(20%),两组之间没有显著差异。筛选出的变量仅包括模型中信号最大的七个变量,即晶状体厚度(LT,逻辑最小绝对收缩估计系数为-0.20)、STS(-0.04)、大小(0.08)、平 K(-0.006)、前房深度(0.15)、球差(-0.006)和柱差(-0.0008)。最佳预测模型取决于 STS(R=0.419,RMSE=0.139),而最无效的预测模型取决于 WTW(R=0.395,RMSE=0.142)。在基于 STS 的拱高分类预测模型中,基于 STS 的拱高分类预测的准确性优于 ATA 或 WTW。
本研究比较了 WTW、ATA 和 STS 在预测术后拱高方面的能力,表明 STS 比其他两个参数具有更强的相关性。