Suppr超能文献

基于各种眼科设备组合的机器学习预测术后眼窝和最佳可植入 Collamer 透镜尺寸。

Predicting post-operative vault and optimal implantable collamer lens size using machine learning based on various ophthalmic device combinations.

机构信息

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China.

出版信息

Biomed Eng Online. 2023 Jun 15;22(1):59. doi: 10.1186/s12938-023-01123-w.

Abstract

BACKGROUND

Implantable Collamer Lens (ICL) surgery has been proven to be a safe, effective, and predictable method for correcting myopia and myopic astigmatism. However, predicting the vault and ideal ICL size remains technically challenging. Despite the growing use of artificial intelligence (AI) in ophthalmology, no AI studies have provided available choices of different instruments and combinations for further vault and size predictions. This study aimed to fill this gap and predict post-operative vault and appropriate ICL size utilizing the comparison of numerous AI algorithms, stacking ensemble learning, and data from various ophthalmic devices and combinations.

RESULTS

This retrospective and cross-sectional study included 1941 eyes of 1941 patients from Zhongshan Ophthalmic Center. For both vault prediction and ICL size selection, the combination containing Pentacam, Sirius, and UBM demonstrated the best results in test sets [R = 0.499 (95% CI 0.470-0.528), mean absolute error = 130.655 (95% CI 128.949-132.111), accuracy = 0.895 (95% CI 0.883-0.907), AUC = 0.928 (95% CI 0.916-0.941)]. Sulcus-to-sulcus (STS), a parameter from UBM, ranked among the top five significant contributors to both post-operative vault and optimal ICL size prediction, consistently outperforming white-to-white (WTW). Moreover, dual-device combinations or single-device parameters could also effectively predict vault and ideal ICL size, and excellent ICL selection prediction was achievable using only UBM parameters.

CONCLUSIONS

Strategies based on multiple machine learning algorithms for different ophthalmic devices and combinations are applicable for vault predicting and ICL sizing, potentially improving the safety of the ICL implantation. Moreover, our findings emphasize the crucial role of UBM in the perioperative period of ICL surgery, as it provides key STS measurements that outperformed WTW measurements in predicting post-operative vault and optimal ICL size, highlighting its potential to enhance ICL implantation safety and accuracy.

摘要

背景

可植入 Collamer 透镜(ICL)手术已被证明是一种安全、有效且可预测的治疗近视和近视散光的方法。然而,预测拱高和理想的 ICL 尺寸仍然具有技术挑战性。尽管人工智能(AI)在眼科领域的应用日益广泛,但尚无 AI 研究提供不同仪器和组合的可用选择,以进一步进行拱高和尺寸预测。本研究旨在填补这一空白,利用比较多种 AI 算法、堆叠集成学习以及来自各种眼科设备和组合的数据,预测术后拱高和合适的 ICL 尺寸。

结果

本回顾性和横断面研究共纳入来自中山大学中山眼科中心的 1941 例 1941 只眼。对于拱高预测和 ICL 尺寸选择,Pentacam、Sirius 和 UBM 组合在测试集中的结果最佳[R=0.499(95%CI 0.470-0.528),平均绝对误差=130.655(95%CI 128.949-132.111),准确性=0.895(95%CI 0.883-0.907),AUC=0.928(95%CI 0.916-0.941)]。UBM 的参数“巩膜-巩膜(STS)”在预测术后拱高和最佳 ICL 尺寸方面均排名前五,其表现始终优于“白-白(WTW)”。此外,双设备组合或单一设备参数也可以有效地预测拱高和理想的 ICL 尺寸,仅使用 UBM 参数即可实现对 ICL 选择的准确预测。

结论

基于多种机器学习算法的不同眼科设备和组合的策略可用于预测拱高和确定 ICL 尺寸,这可能提高 ICL 植入的安全性。此外,我们的研究结果强调了 UBM 在 ICL 手术围手术期的重要作用,因为它提供了关键的 STS 测量值,在预测术后拱高和最佳 ICL 尺寸方面优于 WTW 测量值,这突显了其提高 ICL 植入安全性和准确性的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ff/10268449/7791b78e9702/12938_2023_1123_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验