School of Medicine, University of Louisville, Louisville, KY, USA.
Department of Bioengineering, University of Louisville, Lutz Hall 419, Louisville, KY, 40292, USA.
Lung. 2024 Apr;202(2):139-150. doi: 10.1007/s00408-024-00673-7. Epub 2024 Feb 20.
Diagnosis of idiopathic pulmonary fibrosis (IPF) typically relies on high-resolution computed tomography imaging (HRCT) or histopathology, while monitoring disease severity is done via frequent pulmonary function testing (PFT). More reliable and convenient methods of diagnosing fibrotic interstitial lung disease (ILD) type and monitoring severity would allow for early identification and enhance current therapeutic interventions. This study tested the hypothesis that a machine learning (ML) ensemble analysis of comprehensive metabolic panel (CMP) and complete blood count (CBC) data can accurately distinguish IPF from connective tissue disease ILD (CTD-ILD) and predict disease severity as seen with PFT.
Outpatient data with diagnosis of IPF or CTD-ILD (n = 103 visits by 53 patients) were analyzed via ML methodology to evaluate (1) IPF vs CTD-ILD diagnosis; (2) %predicted Diffusing Capacity of Lung for Carbon Monoxide (DLCO) moderate or mild vs severe; (3) %predicted Forced Vital Capacity (FVC) moderate or mild vs severe; and (4) %predicted FVC mild vs moderate or severe.
ML methodology identified IPF from CTD-ILD with AUC = 0.893, while PFT was classified as DLCO moderate or mild vs severe with AUC = 0.749, FVC moderate or mild vs severe with AUC = 0.741, and FVC mild vs moderate or severe with AUC = 0.739. Key features included albumin, alanine transaminase, %lymphocytes, hemoglobin, %eosinophils, white blood cell count, %monocytes, and %neutrophils.
Analysis of CMP and CBC data via proposed ML methodology offers the potential to distinguish IPF from CTD-ILD and predict severity on associated PFT with accuracy that meets or exceeds current clinical practice.
特发性肺纤维化(IPF)的诊断通常依赖于高分辨率计算机断层扫描成像(HRCT)或组织病理学,而疾病严重程度的监测则通过频繁的肺功能测试(PFT)进行。更可靠和方便的纤维化性间质性肺疾病(ILD)类型诊断和严重程度监测方法将允许早期识别,并增强当前的治疗干预。本研究检验了一个假设,即综合代谢面板(CMP)和全血细胞计数(CBC)数据的机器学习(ML)集成分析可以准确地区分特发性肺纤维化与结缔组织疾病间质性肺病(CTD-ILD),并预测如 PFT 所见的疾病严重程度。
通过 ML 方法分析门诊患者的 IPF 或 CTD-ILD 数据(53 名患者的 103 次就诊),以评估(1)IPF 与 CTD-ILD 的诊断;(2)%预测一氧化碳弥散量(DLCO)中度或轻度与严重;(3)%预测用力肺活量(FVC)中度或轻度与严重;(4)%预测 FVC 轻度与中度或重度。
ML 方法将 IPF 与 CTD-ILD 区分开来,AUC=0.893,而 PFT 则将 DLCO 中度或轻度与严重区分开来,AUC=0.749,FVC 中度或轻度与严重区分开来,AUC=0.741,FVC 轻度与中度或严重区分开来,AUC=0.739。关键特征包括白蛋白、丙氨酸转氨酶、淋巴细胞百分比、血红蛋白、嗜酸性粒细胞百分比、白细胞计数、单核细胞百分比和中性粒细胞百分比。
通过所提出的 ML 方法分析 CMP 和 CBC 数据,有可能区分 IPF 与 CTD-ILD,并预测相关 PFT 的严重程度,准确性与当前临床实践相当或超过。