Miller Hunter A, Valdes Roland
Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA.
Crit Rev Clin Lab Sci. 2025 Aug;62(5):327-346. doi: 10.1080/10408363.2025.2488842. Epub 2025 Apr 17.
The application of artificial intelligence (AI) in laboratory medicine will revolutionize predictive modeling using clinical laboratory information. Machine learning (ML), a sub-discipline of AI, involves fitting algorithms to datasets and is broadly used for data-driven predictive modeling in various disciplines. The majority of ML studies reported in systematic reviews lack key aspects of quality assurance. In clinical laboratory medicine, it is important to consider how differences in analytical methodologies, assay calibration, harmonization, pre-analytical errors, interferences, and physiological factors affecting measured analyte concentrations may also affect the downstream robustness and reliability of ML models. In this article, we address the need for quality improvement and proper validation of ML classification models, with the goal of bringing attention to key concepts pertinent to researchers, manuscript reviewers, and journal editors within the field of pathology and laboratory medicine. Several existing predictive modeling guidelines and recommendations can be readily adapted to the development of ML models in laboratory medicine. We summarize a basic overview of ML and key points from current guidelines including advantages and pitfalls of applied ML. In addition, we draw a parallel between validation of clinical assays and ML models in the context of current regulatory frameworks. The importance of classification performance metrics, model explainability, and data quality along with recommendations for strengthening journal submission requirements are also discussed. Although the focus of this article is on the application of ML in laboratory medicine, many of these concepts extend into other areas of medicine and biomedical science as well.
人工智能(AI)在检验医学中的应用将彻底改变利用临床实验室信息进行的预测建模。机器学习(ML)作为AI的一个子学科,涉及将算法与数据集拟合,广泛应用于各学科中数据驱动的预测建模。系统评价中报告的大多数ML研究缺乏质量保证的关键环节。在临床检验医学中,重要的是要考虑分析方法、检测校准、一致性、分析前误差、干扰以及影响测量分析物浓度的生理因素等方面的差异,如何也可能影响ML模型的下游稳健性和可靠性。在本文中,我们探讨了对ML分类模型进行质量改进和适当验证的必要性,目的是引起病理学和检验医学领域研究人员、稿件评审人员和期刊编辑对相关关键概念的关注。现有的一些预测建模指南和建议可以很容易地适用于检验医学中ML模型的开发。我们总结了ML的基本概况以及当前指南中的要点,包括应用ML的优点和缺陷。此外,我们在当前监管框架的背景下,对临床检测和ML模型的验证进行了比较。还讨论了分类性能指标、模型可解释性和数据质量的重要性,以及加强期刊投稿要求的建议。虽然本文的重点是ML在检验医学中的应用,但其中许多概念也延伸到了医学和生物医学科学的其他领域。