Suppr超能文献

使用基于 CST 的力生成模型对多自由度运动进行解码,该模型仅通过单自由度训练。

Decoding Multi-DoF Movements Using a CST-Based Force Generation Model With Single-DoF Training.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:974-982. doi: 10.1109/TNSRE.2024.3367742. Epub 2024 Feb 28.

Abstract

Recent developments in dexterous myoelectric prosthetics have established a hardware base for human-machine interfaces. Although pattern recognition techniques have seen successful deployment in gesture classification, their applications remain largely confined to certain specific discrete gestures. Addressing complex daily tasks demands an immediate need for precise simultaneous and proportional control (SPC) for multiple degrees of freedom (DoFs) movements. In this paper, we introduce an SPC approach for multi-DoF wrist movements using the cumulative spike trains (CSTs) of motor unit pools, merely leveraging single-DoF training. The efficacy of our proposed approach was validated offline against existing methods respectively based on non-negative matrix factorization and motor unit spike trains, using experimental data. The experimental process includes both single-DoF (for training) and multi-DoF (for testing) movements. We evaluated the performance using Pearson correlation coefficient (R) and the normalized root mean square error (nRMSE). The results reveal that our method outperforms comparative approaches in force estimation for both testing datasets (3 and 4). On average, for dataset 3, R and nRMSE of the flexion/extension DoF (the pronation/supination DoF) are 0.923±0.037 (0.901±0.040) and 12.3±3.1% (12.9±2.2%); similarly, those of dataset 4 are 0.865±0.057 (0.837±0.053) and 14.9±2.9% (15.4±2.0%), respectively. The outcomes demonstrate the effectiveness of our method in simultaneous and proportional force estimation for multi-DoF wrist movements, showing a promising potential as a neural-machine interface for SPC of dexterous myoelectric prostheses.

摘要

近年来,灵巧肌电假肢的发展为人机接口奠定了硬件基础。尽管模式识别技术在手势分类中已经成功应用,但它们的应用仍然主要局限于某些特定的离散手势。要解决复杂的日常任务,需要对多个自由度(DoF)运动进行精确的同时和比例控制(SPC)。在本文中,我们介绍了一种使用运动单元池的累积尖峰训练(CST)进行多自由度手腕运动的 SPC 方法,仅利用单自由度训练。我们的方法的有效性是通过使用实验数据离线针对基于非负矩阵分解和运动单元尖峰训练的现有方法分别进行验证的。实验过程包括单自由度(用于训练)和多自由度(用于测试)运动。我们使用 Pearson 相关系数(R)和归一化均方根误差(nRMSE)来评估性能。结果表明,我们的方法在力估计方面优于比较方法,在两个测试数据集(3 和 4)中均如此。平均而言,对于数据集 3,弯曲/伸展自由度(旋前/旋后自由度)的 R 和 nRMSE 分别为 0.923±0.037(0.901±0.040)和 12.3±3.1%(12.9±2.2%);同样,数据集 4 的分别为 0.865±0.057(0.837±0.053)和 14.9±2.9%(15.4±2.0%)。这些结果表明,我们的方法在多自由度手腕运动的同时和比例力估计方面是有效的,作为灵巧肌电假肢 SPC 的神经-机器接口具有很大的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验