Suppr超能文献

基于空间尖峰检测的表面肌电信号肌肉兴奋评估的累积尖峰序列估计。

Cumulative Spike Train Estimation for Muscle Excitation Assessment From Surface EMG Using Spatial Spike Detection.

出版信息

IEEE J Biomed Health Inform. 2023 Nov;27(11):5335-5344. doi: 10.1109/JBHI.2023.3309662. Epub 2023 Nov 7.

Abstract

Estimating cumulative spike train (CST) of motor units (MUs) from surface electromyography (sEMG) is essential for the effective control of neural interfaces. However, the limited accuracy of existing estimation methods greatly hinders the further development of neural interface. This paper proposes a simple but effective approach for identifying CST based on spatial spike detection from high-density sEMG. Specifically, we use a spatial sliding window to detect spikes according to the spatial propagation characteristics of the motor unit action potential, focusing on the spikes of activated MUs in a local area rather than those of a specific MU. We validated the effectiveness of our proposed method through an experiment involving wrist flexion/extension and pronation/supination, comparing it with a recognized CST estimation method and an MU decomposition based method. The results demonstrated that the proposed method obtained higher accuracy on multi-DoF wrist torque estimation leveraging the estimated CST compared to the other three methods. On average, the correlation coefficient (R) and the normalized root mean square error (nRMSE) between the estimation results and recorded force were 0.96 ± 0.03 and 10.1% ± 3.7%, respectively. Moreover, there was an extremely high interpretive extent between the CSTs of proposed method and the MU decomposition method. The outcomes reveal the superiority of the proposed method in identifying CSTs and can provide promising driven signals for neural interface.

摘要

从表面肌电图 (sEMG) 估计运动单位 (MU) 的累积尖峰脉冲串 (CST) 对于神经接口的有效控制至关重要。然而,现有估计方法的精度有限,极大地阻碍了神经接口的进一步发展。本文提出了一种基于高密度 sEMG 中空间尖峰检测来识别 CST 的简单而有效的方法。具体来说,我们根据运动单位动作电位的空间传播特性,使用空间滑动窗口来检测尖峰,重点是局部激活 MU 的尖峰,而不是特定 MU 的尖峰。我们通过涉及手腕屈伸和旋前/旋后的实验验证了我们提出的方法的有效性,将其与一种公认的 CST 估计方法和一种基于 MU 分解的方法进行了比较。结果表明,与其他三种方法相比,所提出的方法利用估计的 CST 能够在多自由度手腕扭矩估计方面获得更高的精度。平均而言,估计结果与记录力之间的相关系数 (R) 和归一化均方根误差 (nRMSE) 分别为 0.96 ± 0.03 和 10.1% ± 3.7%。此外,所提出的方法和 MU 分解方法的 CST 之间存在极高的解释程度。研究结果表明,所提出的方法在识别 CST 方面具有优越性,可以为神经接口提供有前景的驱动信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验