Addison Holly, Glatter Timo, K A Hochberg Georg, Rebelein Johannes G
Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
Core Facility for Mass Spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
mBio. 2024 Mar 13;15(3):e0331423. doi: 10.1128/mbio.03314-23. Epub 2024 Feb 20.
Nitrogenases are the only enzymes able to fix gaseous nitrogen into bioavailable ammonia and hence are essential for sustaining life. Catalysis by nitrogenases requires both a large amount of ATP and electrons donated by strongly reducing ferredoxins or flavodoxins. Our knowledge about the mechanisms of electron transfer to nitrogenase enzymes is limited: The electron transport to the iron (Fe)-nitrogenase has hardly been investigated. Here, we characterized the electron transfer pathway to the Fe-nitrogenase in proteome analyses, genetic deletions, complementation studies, and phylogenetics. Proteome analyses revealed an upregulation of four ferredoxins under nitrogen-fixing conditions reliant on the Fe-nitrogenase in a molybdenum nitrogenase knockout strain, compared to non-nitrogen-fixing conditions. Based on these findings, strains with deletions of ferredoxin () and flavodoxin () genes were constructed to investigate their roles in nitrogen fixation by the Fe-nitrogenase. deletion strains were characterized by monitoring diazotrophic growth and Fe-nitrogenase activity . Only deletions of or resulted in slower growth and reduced Fe-nitrogenase activity, whereas the double deletion of both and abolished diazotrophic growth. Differences in the proteomes of ∆ and ∆ strains, in conjunction with differing plasmid complementation behaviors of and indicate that the two Fds likely possess different roles and functions. These findings will guide future engineering of the electron transport systems to nitrogenase enzymes, with the aim of increased electron flux and product formation.IMPORTANCENitrogenases are essential for biological nitrogen fixation, converting atmospheric nitrogen gas to bioavailable ammonia. The production of ammonia by diazotrophic organisms, harboring nitrogenases, is essential for sustaining plant growth. Hence, there is a large scientific interest in understanding the cellular mechanisms for nitrogen fixation nitrogenases. Nitrogenases rely on highly reduced electrons to power catalysis, although we lack knowledge as to which proteins shuttle the electrons to nitrogenases within cells. Here, we characterized the electron transport to the iron (Fe)-nitrogenase in the model diazotroph , showing that two distinct ferredoxins are very important for nitrogen fixation despite having different redox centers. In addition, our research expands upon the debate on whether ferredoxins have functional redundancy or perform distinct roles within cells. Here, we observe that both essential ferredoxins likely have distinct roles based on differential proteome shifts of deletion strains and different complementation behaviors.
固氮酶是唯一能够将气态氮固定为生物可利用氨的酶,因此对于维持生命至关重要。固氮酶的催化作用既需要大量的三磷酸腺苷(ATP),也需要由强还原性铁氧化还原蛋白或黄素氧化还原蛋白提供的电子。我们对电子传递至固氮酶的机制了解有限:向铁(Fe)固氮酶的电子传递几乎未被研究过。在此,我们通过蛋白质组分析、基因缺失、互补研究和系统发育学对向Fe固氮酶的电子传递途径进行了表征。蛋白质组分析显示,与非固氮条件相比,在钼固氮酶基因敲除菌株中,依赖Fe固氮酶的固氮条件下有四种铁氧化还原蛋白上调。基于这些发现,构建了铁氧化还原蛋白()和黄素氧化还原蛋白()基因缺失的菌株,以研究它们在Fe固氮酶固氮过程中的作用。通过监测固氮生长和Fe固氮酶活性对缺失菌株进行了表征。只有或的缺失导致生长缓慢和Fe固氮酶活性降低,而和的双重缺失则消除了固氮生长。Δ和Δ菌株蛋白质组的差异,以及和不同的质粒互补行为表明这两种铁氧化还原蛋白可能具有不同的作用和功能。这些发现将指导未来对固氮酶电子传递系统的工程改造,目标是增加电子通量和产物形成。
重要性
固氮酶对于生物固氮至关重要,它将大气中的氮气转化为生物可利用的氨。含有固氮酶的固氮生物产生氨对于维持植物生长至关重要。因此,了解固氮酶的细胞固氮机制具有重大科学意义。固氮酶依靠高度还原的电子来驱动催化作用,尽管我们尚不清楚细胞内哪些蛋白质将电子传递给固氮酶。在此,我们对模式固氮生物中向铁(Fe)固氮酶的电子传递进行了表征,表明两种不同的铁氧化还原蛋白尽管具有不同的氧化还原中心,但对固氮非常重要。此外,我们的研究扩展了关于铁氧化还原蛋白在细胞内是具有功能冗余还是发挥不同作用的争论。在此,我们观察到,基于缺失菌株蛋白质组的差异变化和不同的互补行为,这两种必需的铁氧化还原蛋白可能具有不同的作用。