Hoffmann Marie-Christine, Wagner Eva, Langklotz Sina, Pfänder Yvonne, Hött Sina, Bandow Julia E, Masepohl Bernd
Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Bochum, Germany.
Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Bochum, Germany
J Bacteriol. 2015 Dec 7;198(4):633-43. doi: 10.1128/JB.00750-15.
Rhodobacter capsulatus is capable of synthesizing two nitrogenases, a molybdenum-dependent nitrogenase and an alternative Mo-free iron-only nitrogenase, enabling this diazotroph to grow with molecular dinitrogen (N2) as the sole nitrogen source. Here, the Mo responses of the wild type and of a mutant lacking ModABC, the high-affinity molybdate transporter, were examined by proteome profiling, Western analysis, epitope tagging, and lacZ reporter fusions. Many Mo-controlled proteins identified in this study have documented or presumed roles in nitrogen fixation, demonstrating the relevance of Mo control in this highly ATP-demanding process. The levels of Mo-nitrogenase, NifHDK, and the Mo storage protein, Mop, increased with increasing Mo concentrations. In contrast, Fe-nitrogenase, AnfHDGK, and ModABC, the Mo transporter, were expressed only under Mo-limiting conditions. IscN was identified as a novel Mo-repressed protein. Mo control of Mop, AnfHDGK, and ModABC corresponded to transcriptional regulation of their genes by the Mo-responsive regulators MopA and MopB. Mo control of NifHDK and IscN appeared to be more complex, involving different posttranscriptional mechanisms. In line with the simultaneous control of IscN and Fe-nitrogenase by Mo, IscN was found to be important for Fe-nitrogenase-dependent diazotrophic growth. The possible role of IscN as an A-type carrier providing Fe-nitrogenase with Fe-S clusters is discussed.
Biological nitrogen fixation is a central process in the global nitrogen cycle by which the abundant but chemically inert dinitrogen (N2) is reduced to ammonia (NH3), a bioavailable form of nitrogen. Nitrogen reduction is catalyzed by nitrogenases found in diazotrophic bacteria and archaea but not in eukaryotes. All diazotrophs synthesize molybdenum-dependent nitrogenases. In addition, some diazotrophs, including Rhodobacter capsulatus, possess catalytically less efficient alternative Mo-free nitrogenases, whose expression is repressed by Mo. Despite the importance of Mo in biological nitrogen fixation, this is the first study analyzing the proteome-wide Mo response in a diazotroph. IscN was recognized as a novel member of the molybdoproteome in R. capsulatus. It was dispensable for Mo-nitrogenase activity but supported diazotrophic growth under Mo-limiting conditions.
荚膜红细菌能够合成两种固氮酶,一种是依赖钼的固氮酶,另一种是不含钼的仅含铁的替代固氮酶,这使得这种固氮菌能够以分子态二氮(N₂)作为唯一氮源生长。在此,通过蛋白质组分析、蛋白质免疫印迹分析、表位标记和lacZ报告基因融合,研究了野生型以及缺乏高亲和力钼酸盐转运蛋白ModABC的突变体对钼的响应。本研究中鉴定出的许多受钼调控的蛋白质在固氮过程中具有已记录或推测的作用,这表明钼调控在这个高耗能过程中具有重要意义。钼固氮酶NifHDK和钼储存蛋白Mop的水平随着钼浓度的增加而升高。相反,铁固氮酶AnfHDGK和钼转运蛋白ModABC仅在钼限制条件下表达。IscN被鉴定为一种新的受钼抑制的蛋白质。Mop、AnfHDGK和ModABC的钼调控对应于钼响应调节因子MopA和MopB对其基因的转录调控。NifHDK和IscN的钼调控似乎更为复杂,涉及不同的转录后机制。与钼对IscN和铁固氮酶的同时调控一致,发现IscN对依赖铁固氮酶的固氮生长很重要。本文讨论了IscN作为一种A类载体为铁固氮酶提供铁硫簇的可能作用。
生物固氮是全球氮循环中的一个核心过程,通过该过程,丰富但化学性质惰性的二氮(N₂)被还原为氨(NH₃),这是一种生物可利用的氮形式。氮还原由固氮菌和古菌中的固氮酶催化,但真核生物中不存在。所有固氮菌都能合成依赖钼的固氮酶。此外,一些固氮菌,包括荚膜红细菌,还拥有催化效率较低的不含钼的替代固氮酶,其表达受钼抑制。尽管钼在生物固氮中很重要,但这是第一项分析固氮菌全蛋白质组对钼响应的研究。IscN被认为是荚膜红细菌钼蛋白组中的一个新成员。它对于钼固氮酶活性并非必需,但在钼限制条件下支持固氮生长。