Department of Gastrointestinal and Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
IET Syst Biol. 2024 Apr;18(2):41-54. doi: 10.1049/syb2.12088. Epub 2024 Feb 20.
Gastric cancer (GC) is a frequent malignancy of the gastrointestinal tract. Exploring the potential anoikis mechanisms and pathways might facilitate GC research.
The authors aim to determine the significance of anoikis-related genes (ARGs) in GC prognosis and explore the regulatory mechanisms in epigenetics.
After describing the genetic and transcriptional alterations of ARGs, we searched differentially expressed genes (DEGs) from the cancer genome atlas and gene expression omnibus databases to identify major cancer marker pathways. The non-negative matrix factorisation algorithm, Lasso, and Cox regression analysis were used to construct a risk model, and we validated and assessed the nomogram. Based on multiple levels and online platforms, this research evaluated the regulatory relationship of ARGs with GC.
Overexpression of ARGs is associated with poor prognosis, which modulates immune signalling and promotes anti-anoikis. The consistency of the DEGs clustering with weighted gene co-expression network analysis results and the nomogram containing 10 variable genes improved the clinical applicability of ARGs. In anti-anoikis mode, cytology, histology, and epigenetics could facilitate the analysis of immunophenotypes, tumour immune microenvironment (TIME), and treatment prognosis.
A novel anoikis-related prognostic model for GC is constructed, and the significance of anoikis-related prognostic genes in the TIME and the metabolic pathways of tumours is initially explored.
胃癌(GC)是一种常见的胃肠道恶性肿瘤。探索潜在的失巢凋亡机制和途径可能有助于 GC 的研究。
作者旨在确定失巢凋亡相关基因(ARGs)在 GC 预后中的意义,并探讨表观遗传学中的调控机制。
在描述 ARGs 的遗传和转录变化后,我们从癌症基因组图谱和基因表达综合数据库中搜索差异表达基因(DEGs),以鉴定主要的癌症标志物途径。非负矩阵分解算法、Lasso 和 Cox 回归分析用于构建风险模型,并进行验证和评估列线图。基于多个层次和在线平台,本研究评估了 ARGs 与 GC 的调控关系。
ARGs 的过表达与预后不良相关,调节免疫信号并促进抗失巢凋亡。差异基因聚类与加权基因共表达网络分析结果的一致性以及包含 10 个变量基因的列线图提高了 ARGs 的临床适用性。在抗失巢凋亡模式中,细胞学、组织学和表观遗传学可以促进免疫表型、肿瘤免疫微环境(TIME)和治疗预后的分析。
构建了一种新的 GC 相关失巢凋亡预后模型,并初步探讨了失巢凋亡相关预后基因在 TIME 和肿瘤代谢途径中的意义。