Suppr超能文献

开发一种新型标志物预测骨肉瘤患者的生存并影响其免疫微环境:与失巢凋亡相关的基因。

Develop a Novel Signature to Predict the Survival and Affect the Immune Microenvironment of Osteosarcoma Patients: Anoikis-Related Genes.

机构信息

Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

出版信息

J Immunol Res. 2024 Mar 27;2024:6595252. doi: 10.1155/2024/6595252. eCollection 2024.

Abstract

OBJECTIVE

Osteosarcoma (OS) represents a prevalent primary bone neoplasm predominantly affecting the pediatric and adolescent populations, presenting a considerable challenge to human health. The objective of this investigation is to develop a prognostic model centered on anoikis-related genes (ARGs), with the aim of accurately forecasting the survival outcomes of individuals diagnosed with OS and offering insights into modulating the immune microenvironment.

METHODS

The study's training cohort comprised 86 OS patients sourced from The Cancer Genome Atlas database, while the validation cohort consisted of 53 OS patients extracted from the Gene Expression Omnibus database. Differential analysis utilized the GSE33382 dataset, encompassing three normal samples and 84 OS samples. Subsequently, the study executed gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses. Identification of differentially expressed ARGs associated with OS prognosis was carried out through univariate COX regression analysis, followed by LASSO regression analysis to mitigate overfitting risks and construct a robust prognostic model. Model accuracy was assessed via risk curves, survival curves, receiver operating characteristic curves, independent prognostic analysis, principal component analysis, and t-distributed stochastic neighbor embedding (t-SNE) analysis. Additionally, a nomogram model was devised, exhibiting promising potential in predicting OS patient prognosis. Further investigations incorporated gene set enrichment analysis to delineate active pathways in high- and low-risk groups. Furthermore, the impact of the risk prognostic model on the immune microenvironment of OS was evaluated through tumor microenvironment analysis, single-sample gene set enrichment analysis (ssGSEA), and immune infiltration cell correlation analysis. Drug sensitivity analysis was conducted to identify potentially effective drugs for OS treatment. Ultimately, the verification of the implicated ARGs in the model construction was conducted through the utilization of real-time quantitative polymerase chain reaction (RT-qPCR).

RESULTS

The ARGs risk prognostic model was developed, comprising seven high-risk ARGs (CBS, MYC, MMP3, CD36, SCD, COL13A1, and HSP90B1) and four low-risk ARGs (VASH1, TNFRSF1A, PIP5K1C, and CTNNBIP1). This prognostic model demonstrates a robust capability in predicting overall survival among patients. Analysis of immune correlations revealed that the high-risk group exhibited lower immune scores compared to the low-risk group within our prognostic model. Specifically, CD8+ T cells, neutrophils, and tumor-infiltrating lymphocytes were notably downregulated in the high-risk group, alongside significant downregulation of checkpoint and T cell coinhibition mechanisms. Additionally, three immune checkpoint-related genes (CD200R1, HAVCR2, and LAIR1) displayed significant differences between the high- and low-risk groups. The utilization of a nomogram model demonstrated significant efficacy in prognosticating the outcomes of OS patients. Furthermore, tumor metastasis emerged as an independent prognostic factor, suggesting a potential association between ARGs and OS metastasis. Notably, our study identified eight drugs-Bortezomib, Midostaurin, CHIR.99021, JNK.Inhibitor.VIII, Lenalidomide, Sunitinib, GDC0941, and GW.441756-as exhibiting sensitivity toward OS. The RT-qPCR findings indicate diminished expression levels of CBS, MYC, MMP3, and PIP5K1C within the context of OS. Conversely, elevated expression levels were observed for CD36, SCD, COL13A1, HSP90B1, VASH1, and CTNNBIP1 in OS.

CONCLUSION

The outcomes of this investigation present an opportunity to predict the survival outcomes among individuals diagnosed with OS. Furthermore, these findings hold promise for progressing research endeavors focused on prognostic evaluation and therapeutic interventions pertaining to this particular ailment.

摘要

目的

骨肉瘤(OS)是一种主要影响儿童和青少年人群的常见原发性骨肿瘤,对人类健康构成重大挑战。本研究旨在开发一种基于细胞凋亡相关基因(ARGs)的预后模型,旨在准确预测 OS 患者的生存结果,并深入了解调节免疫微环境。

方法

本研究的训练队列包括来自癌症基因组图谱数据库的 86 名 OS 患者,验证队列包括来自基因表达综合数据库的 53 名 OS 患者。使用 GSE33382 数据集进行差异分析,该数据集包含三个正常样本和 84 个 OS 样本。随后,进行基因本体和京都基因与基因组百科全书富集分析。通过单变量 COX 回归分析鉴定与 OS 预后相关的差异表达 ARGs,然后进行 LASSO 回归分析以减轻过拟合风险并构建稳健的预后模型。通过风险曲线、生存曲线、接收者操作特征曲线、独立预后分析、主成分分析和 t 分布随机邻域嵌入(t-SNE)分析评估模型准确性。此外,设计了一个列线图模型,在预测 OS 患者预后方面表现出良好的潜力。进一步的研究包括基因集富集分析,以描绘高低风险组中活跃的途径。此外,通过肿瘤微环境分析、单样本基因集富集分析(ssGSEA)和免疫浸润细胞相关性分析评估风险预后模型对 OS 免疫微环境的影响。进行药物敏感性分析以确定潜在有效的 OS 治疗药物。最终,通过实时定量聚合酶链反应(RT-qPCR)验证模型构建中涉及的 ARGs。

结果

开发了 ARGs 风险预后模型,包括七个高风险 ARGs(CBS、MYC、MMP3、CD36、SCD、COL13A1 和 HSP90B1)和四个低风险 ARGs(VASH1、TNFRSF1A、PIP5K1C 和 CTNNBIP1)。该预后模型在预测患者总体生存率方面具有强大的能力。免疫相关性分析表明,我们的预后模型中,高风险组的免疫评分低于低风险组。具体而言,高风险组的 CD8+T 细胞、中性粒细胞和肿瘤浸润淋巴细胞显著下调,同时检查点和 T 细胞共抑制机制也显著下调。此外,三个免疫检查点相关基因(CD200R1、HAVCR2 和 LAIR1)在高风险组和低风险组之间存在显著差异。使用列线图模型在预测 OS 患者预后方面表现出显著的疗效。此外,肿瘤转移成为独立的预后因素,表明 ARGs 与 OS 转移之间可能存在关联。值得注意的是,我们的研究确定了八种药物-硼替佐米、米哚妥林、CHIR.99021、JNK.Inhibitor.VIII、来那度胺、舒尼替尼、GDC0941 和 GW.441756-对 OS 具有敏感性。RT-qPCR 结果表明,在 OS 中 CBS、MYC、MMP3 和 PIP5K1C 的表达水平降低。相反,CD36、SCD、COL13A1、HSP90B1、VASH1 和 CTNNBIP1 在 OS 中的表达水平升高。

结论

本研究的结果为预测 OS 患者的生存结果提供了机会。此外,这些发现为进一步研究进展提供了机会,旨在针对该疾病进行预后评估和治疗干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de33/11491172/0a1f6acbd527/JIR2024-6595252.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验