Hopkins Marine Station, Oceans Department, Stanford University, Pacific Grove, CA, USA.
Cascadia Research Collective, Olympia, WA, USA.
Proc Biol Sci. 2024 Feb 28;291(2017):20232461. doi: 10.1098/rspb.2023.2461. Epub 2024 Feb 21.
In the marine environment, dynamic physical processes shape biological productivity and predator-prey interactions across multiple scales. Identifying pathways of physical-biological coupling is fundamental to understand the functioning of marine ecosystems yet it is challenging because the interactions are difficult to measure. We examined submesoscale (less than 100 km) surface current features using remote sensing techniques alongside ship-based surveys of krill and baleen whale distributions in the California Current System. We found that aggregative surface current features, represented by Lagrangian coherent structures (LCS) integrated over temporal scales between 2 and 10 days, were associated with increased (a) krill density (up to 2.6 times more dense), (b) baleen whale presence (up to 8.3 times more likely) and (c) subsurface seawater density (at depths up to 10 m). The link between physical oceanography, krill density and krill-predator distributions suggests that LCS are important features that drive the flux of energy and nutrients across trophic levels. Our results may help inform dynamic management strategies aimed at reducing large whales ship strikes and help assess the potential impacts of environmental change on this critical ecosystem.
在海洋环境中,动态的物理过程在多个尺度上塑造了生物生产力和捕食者-猎物相互作用。确定物理-生物耦合途径对于理解海洋生态系统的功能至关重要,但由于这些相互作用难以测量,因此具有挑战性。我们使用遥感技术和船基调查相结合的方法,研究了加利福尼亚海流系统中的亚中尺度(小于 100 公里)表面流特征。我们发现,聚集的表面流特征,由拉格朗日相干结构(LCS)表示,整合了 2 到 10 天之间的时间尺度,与(a)磷虾密度增加(高达 2.6 倍),(b)须鲸存在(高达 8.3 倍)和(c)次表层海水密度(在深度达 10 米)有关。物理海洋学、磷虾密度和磷虾-捕食者分布之间的联系表明,LCS 是驱动能量和营养物质在营养级之间流动的重要特征。我们的结果可能有助于为旨在减少大型鲸鱼与船只碰撞的动态管理策略提供信息,并帮助评估环境变化对这一关键生态系统的潜在影响。