Suppr超能文献

基于低渗透率车辆轨迹数据的交通信号灯优化

Traffic light optimization with low penetration rate vehicle trajectory data.

作者信息

Wang Xingmin, Jerome Zachary, Wang Zihao, Zhang Chenhao, Shen Shengyin, Kumar Vivek Vijaya, Bai Fan, Krajewski Paul, Deneau Danielle, Jawad Ahmad, Jones Rachel, Piotrowicz Gary, Liu Henry X

机构信息

Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.

Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.

出版信息

Nat Commun. 2024 Feb 20;15(1):1306. doi: 10.1038/s41467-024-45427-4.

Abstract

Traffic light optimization is known to be a cost-effective method for reducing congestion and energy consumption in urban areas without changing physical road infrastructure. However, due to the high installation and maintenance costs of vehicle detectors, most intersections are controlled by fixed-time traffic signals that are not regularly optimized. To alleviate traffic congestion at intersections, we present a large-scale traffic signal re-timing system that uses a small percentage of vehicle trajectories as the only input without reliance on any detectors. We develop the probabilistic time-space diagram, which establishes the connection between a stochastic point-queue model and vehicle trajectories under the proposed Newellian coordinates. This model enables us to reconstruct the recurrent spatial-temporal traffic state by aggregating sufficient historical data. Optimization algorithms are then developed to update traffic signal parameters for intersections with optimality gaps. A real-world citywide test of the system was conducted in Birmingham, Michigan, and demonstrated that it decreased the delay and number of stops at signalized intersections by up to 20% and 30%, respectively. This system provides a scalable, sustainable, and efficient solution to traffic light optimization and can potentially be applied to every fixed-time signalized intersection in the world.

摘要

交通信号灯优化是一种在不改变实体道路基础设施的情况下,减少城市拥堵和能源消耗的经济有效方法。然而,由于车辆检测器的安装和维护成本高昂,大多数十字路口由固定时间的交通信号灯控制,且这些信号灯未得到定期优化。为缓解十字路口的交通拥堵,我们提出了一种大规模交通信号重新定时系统,该系统仅使用一小部分车辆轨迹作为唯一输入,无需依赖任何检测器。我们开发了概率时空图,它在所提出的纽厄尔坐标下建立了随机点队列模型与车辆轨迹之间的联系。该模型使我们能够通过汇总足够的历史数据来重建周期性的时空交通状态。然后开发优化算法,以更新存在最优差距的十字路口的交通信号参数。该系统在密歇根州伯明翰市进行了全市范围的实际测试,结果表明它分别将信号控制十字路口的延误和停车次数减少了高达20%和30%。该系统为交通信号灯优化提供了一种可扩展、可持续且高效的解决方案,并且有可能应用于世界上每个固定时间信号控制的十字路口。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d50/10879128/04c799feca62/41467_2024_45427_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验