Department of Radiology, University of Wisconsin School of Medicine & Public Health, Madison, WI, 53792, United States.
National Institutes of Health Clinical Center, Potomac, MD, 20892, United States.
Br J Radiol. 2024 Mar 28;97(1156):770-778. doi: 10.1093/bjr/tqae041.
Assess automated CT imaging biomarkers in patients who went on to hip fracture, compared with controls.
In this retrospective case-control study, 6926 total patients underwent initial abdominal CT over a 20-year interval at one institution. A total of 1308 patients (mean age at initial CT, 70.5 ± 12.0 years; 64.4% female) went on to hip fracture (mean time to fracture, 5.2 years); 5618 were controls (mean age 70.3 ± 12.0 years; 61.2% female; mean follow-up interval 7.6 years). Validated fully automated quantitative CT algorithms for trabecular bone attenuation (at L1), skeletal muscle attenuation (at L3), and subcutaneous adipose tissue area (SAT) (at L3) were applied to all scans. Hazard ratios (HRs) comparing highest to lowest risk quartiles and receiver operating characteristic (ROC) curve analysis including area under the curve (AUC) were derived.
Hip fracture HRs (95% CI) were 3.18 (2.69-3.76) for low trabecular bone HU, 1.50 (1.28-1.75) for low muscle HU, and 2.18 (1.86-2.56) for low SAT. 10-year ROC AUC values for predicting hip fracture were 0.702, 0.603, and 0.603 for these CT-based biomarkers, respectively. Multivariate combinations of these biomarkers further improved predictive value; the 10-year ROC AUC combining bone/muscle/SAT was 0.733, while combining muscle/SAT was 0.686.
Opportunistic use of automated CT bone, muscle, and fat measures can identify patients at higher risk for future hip fracture, regardless of the indication for CT imaging.
CT data can be leveraged opportunistically for further patient evaluation, with early intervention as needed. These novel AI tools analyse CT data to determine a patient's future hip fracture risk.
评估在髋部骨折患者中进行的自动 CT 成像生物标志物与对照组相比的情况。
在这项回顾性病例对照研究中,在一家机构的 20 年时间内,共有 6926 名患者接受了初始腹部 CT 检查。共有 1308 名患者(初始 CT 时的平均年龄为 70.5±12.0 岁;64.4%为女性)发生髋部骨折(平均骨折时间为 5.2 年);5618 名患者为对照组(平均年龄 70.3±12.0 岁;61.2%为女性;平均随访间隔为 7.6 年)。对所有扫描应用了经过验证的全自动化定量 CT 算法,用于评估骨小梁衰减(L1 处)、骨骼肌衰减(L3 处)和皮下脂肪组织面积(SAT)(L3 处)。得出了比较最高和最低风险四分位数的风险比(HR)和包括曲线下面积(AUC)在内的接收者操作特征(ROC)曲线分析。
髋部骨折的 HR(95%CI)分别为骨小梁 HU 低值时为 3.18(2.69-3.76)、肌肉 HU 低值时为 1.50(1.28-1.75)、SAT 低值时为 2.18(1.86-2.56)。这些 CT 生物标志物预测髋部骨折的 10 年 ROC AUC 值分别为 0.702、0.603 和 0.603。这些生物标志物的多变量组合进一步提高了预测值;结合骨/肌肉/SAT 的 10 年 ROC AUC 为 0.733,而结合肌肉/SAT 的 10 年 ROC AUC 为 0.686。
机会性使用自动 CT 骨、肌肉和脂肪测量可以识别出未来髋部骨折风险较高的患者,无论 CT 成像的适应症如何。
可以利用 CT 数据来进一步评估患者,根据需要进行早期干预。这些新的人工智能工具分析 CT 数据,以确定患者未来髋部骨折的风险。