Suppr超能文献

用于机会性预测未来髋部骨折的全自动 CT 成像生物标志物。

Fully automated CT imaging biomarkers for opportunistic prediction of future hip fractures.

机构信息

Department of Radiology, University of Wisconsin School of Medicine & Public Health, Madison, WI, 53792, United States.

National Institutes of Health Clinical Center, Potomac, MD, 20892, United States.

出版信息

Br J Radiol. 2024 Mar 28;97(1156):770-778. doi: 10.1093/bjr/tqae041.

Abstract

OBJECTIVE

Assess automated CT imaging biomarkers in patients who went on to hip fracture, compared with controls.

METHODS

In this retrospective case-control study, 6926 total patients underwent initial abdominal CT over a 20-year interval at one institution. A total of 1308 patients (mean age at initial CT, 70.5 ± 12.0 years; 64.4% female) went on to hip fracture (mean time to fracture, 5.2 years); 5618 were controls (mean age 70.3 ± 12.0 years; 61.2% female; mean follow-up interval 7.6 years). Validated fully automated quantitative CT algorithms for trabecular bone attenuation (at L1), skeletal muscle attenuation (at L3), and subcutaneous adipose tissue area (SAT) (at L3) were applied to all scans. Hazard ratios (HRs) comparing highest to lowest risk quartiles and receiver operating characteristic (ROC) curve analysis including area under the curve (AUC) were derived.

RESULTS

Hip fracture HRs (95% CI) were 3.18 (2.69-3.76) for low trabecular bone HU, 1.50 (1.28-1.75) for low muscle HU, and 2.18 (1.86-2.56) for low SAT. 10-year ROC AUC values for predicting hip fracture were 0.702, 0.603, and 0.603 for these CT-based biomarkers, respectively. Multivariate combinations of these biomarkers further improved predictive value; the 10-year ROC AUC combining bone/muscle/SAT was 0.733, while combining muscle/SAT was 0.686.

CONCLUSION

Opportunistic use of automated CT bone, muscle, and fat measures can identify patients at higher risk for future hip fracture, regardless of the indication for CT imaging.

ADVANCES IN KNOWLEDGE

CT data can be leveraged opportunistically for further patient evaluation, with early intervention as needed. These novel AI tools analyse CT data to determine a patient's future hip fracture risk.

摘要

目的

评估在髋部骨折患者中进行的自动 CT 成像生物标志物与对照组相比的情况。

方法

在这项回顾性病例对照研究中,在一家机构的 20 年时间内,共有 6926 名患者接受了初始腹部 CT 检查。共有 1308 名患者(初始 CT 时的平均年龄为 70.5±12.0 岁;64.4%为女性)发生髋部骨折(平均骨折时间为 5.2 年);5618 名患者为对照组(平均年龄 70.3±12.0 岁;61.2%为女性;平均随访间隔为 7.6 年)。对所有扫描应用了经过验证的全自动化定量 CT 算法,用于评估骨小梁衰减(L1 处)、骨骼肌衰减(L3 处)和皮下脂肪组织面积(SAT)(L3 处)。得出了比较最高和最低风险四分位数的风险比(HR)和包括曲线下面积(AUC)在内的接收者操作特征(ROC)曲线分析。

结果

髋部骨折的 HR(95%CI)分别为骨小梁 HU 低值时为 3.18(2.69-3.76)、肌肉 HU 低值时为 1.50(1.28-1.75)、SAT 低值时为 2.18(1.86-2.56)。这些 CT 生物标志物预测髋部骨折的 10 年 ROC AUC 值分别为 0.702、0.603 和 0.603。这些生物标志物的多变量组合进一步提高了预测值;结合骨/肌肉/SAT 的 10 年 ROC AUC 为 0.733,而结合肌肉/SAT 的 10 年 ROC AUC 为 0.686。

结论

机会性使用自动 CT 骨、肌肉和脂肪测量可以识别出未来髋部骨折风险较高的患者,无论 CT 成像的适应症如何。

知识进步

可以利用 CT 数据来进一步评估患者,根据需要进行早期干预。这些新的人工智能工具分析 CT 数据,以确定患者未来髋部骨折的风险。

相似文献

1
Fully automated CT imaging biomarkers for opportunistic prediction of future hip fractures.
Br J Radiol. 2024 Mar 28;97(1156):770-778. doi: 10.1093/bjr/tqae041.
5
Opportunistic screening for osteoporosis by routine CT in Southern Europe.
Osteoporos Int. 2017 Mar;28(3):983-990. doi: 10.1007/s00198-016-3804-3. Epub 2017 Jan 20.
7
CT image-based biomarkers acquired by AI-based algorithms for the opportunistic prediction of falls.
BJR Open. 2023 May 16;5(1):20230014. doi: 10.1259/bjro.20230014. eCollection 2023.
10
Opportunistic screening for osteoporosis in abdominal computed tomography for Chinese population.
Arch Osteoporos. 2018 Jul 9;13(1):76. doi: 10.1007/s11657-018-0492-y.

本文引用的文献

1
Opportunistic Screening: Scientific Expert Panel.
Radiology. 2023 Jun;307(5):e222044. doi: 10.1148/radiol.222044. Epub 2023 May 23.
3
AI-based opportunistic CT screening of incidental cardiovascular disease, osteoporosis, and sarcopenia: cost-effectiveness analysis.
Abdom Radiol (NY). 2023 Mar;48(3):1181-1198. doi: 10.1007/s00261-023-03800-9. Epub 2023 Jan 20.
4
Improved CT-based Osteoporosis Assessment with a Fully Automated Deep Learning Tool.
Radiol Artif Intell. 2022 Aug 31;4(5):e220042. doi: 10.1148/ryai.220042. eCollection 2022 Sep.
5
A Review of CT-Based Fracture Risk Assessment with Finite Element Modeling and Machine Learning.
Curr Osteoporos Rep. 2022 Oct;20(5):309-319. doi: 10.1007/s11914-022-00743-w. Epub 2022 Sep 1.
6
The clinician's guide to prevention and treatment of osteoporosis.
Osteoporos Int. 2022 Oct;33(10):2049-2102. doi: 10.1007/s00198-021-05900-y. Epub 2022 Apr 28.
7
Value-added Opportunistic CT Screening: State of the Art.
Radiology. 2022 May;303(2):241-254. doi: 10.1148/radiol.211561. Epub 2022 Mar 15.
9
Automated CT-Based Body Composition Analysis: A Golden Opportunity.
Korean J Radiol. 2021 Dec;22(12):1934-1937. doi: 10.3348/kjr.2021.0775. Epub 2021 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验