Liu Daniel, Binkley Neil C, Perez Alberto, Garrett John W, Zea Ryan, Summers Ronald M, Pickhardt Perry J
Department of Radiology, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA.
Osteoporosis Clinical Research Program, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA.
BJR Open. 2023 May 16;5(1):20230014. doi: 10.1259/bjro.20230014. eCollection 2023.
Evaluate whether biomarkers measured by automated artificial intelligence (AI)-based algorithms are suggestive of future fall risk.
In this retrospective age- and sex-matched case-control study, 9029 total patients underwent initial abdominal CT for a variety of indications over a 20-year interval at one institution. 3535 case patients (mean age at initial CT, 66.5 ± 9.6 years; 63.4% female) who went on to fall (mean interval to fall, 6.5 years) and 5494 controls (mean age at initial CT, 66.7 ± 9.8 years; 63.4% females; mean follow-up interval, 6.6 years) were included. Falls were identified by electronic health record review. Validated and fully automated quantitative CT algorithms for skeletal muscle, adipose tissue, and trabecular bone attenuation at the level of L1 were applied to all scans. Uni- and multivariate assessment included hazard ratios (HRs) and area under the receiver operating characteristic (AUROC) curve.
Fall HRs (with 95% CI) for low muscle Hounsfield unit, high total adipose area, and low bone Hounsfield unit were 1.82 (1.65-2.00), 1.31 (1.19-1.44) and 1.91 (1.74-2.11), respectively, and the 10-year AUROC values for predicting falls were 0.619, 0.556, and 0.639, respectively. Combining all these CT biomarkers further improved the predictive value, including 10-year AUROC of 0.657.
Automated abdominal CT-based opportunistic measures of muscle, fat, and bone offer a novel approach to risk stratification for future falls, potentially by identifying patients with osteosarcopenic obesity.
There are few well-established clinical tools to predict falls. We use novel AI-based body composition algorithms to leverage incidental CT data to help determine a patient's future fall risk.
评估通过基于人工智能(AI)的自动化算法测量的生物标志物是否提示未来的跌倒风险。
在这项年龄和性别匹配的回顾性病例对照研究中,9029例患者在一家机构的20年期间因各种适应症接受了初次腹部CT检查。纳入了3535例病例患者(初次CT检查时的平均年龄为66.5±9.6岁;63.4%为女性),这些患者随后发生了跌倒(跌倒的平均间隔时间为6.5年),以及5494例对照患者(初次CT检查时的平均年龄为66.7±9.8岁;63.4%为女性;平均随访间隔时间为6.6年)。通过电子健康记录回顾确定跌倒情况。将经过验证的、用于测量L1水平骨骼肌、脂肪组织和小梁骨衰减的全自动定量CT算法应用于所有扫描图像。单变量和多变量评估包括风险比(HR)和受试者操作特征曲线下面积(AUROC)。
肌肉Hounsfield单位低、总脂肪面积高和骨Hounsfield单位低的跌倒HR(95%CI)分别为1.82(1.65 - 2.00)、1.31(1.19 - 1.44)和1.91(1.74 - 2.11),预测跌倒的10年AUROC值分别为0.619、0.556和0.639。将所有这些CT生物标志物结合起来进一步提高了预测价值,10年AUROC为0.657。
基于腹部CT的肌肉、脂肪和骨骼的自动化机会性测量为未来跌倒的风险分层提供了一种新方法,可能是通过识别患有骨少肌性肥胖的患者。
很少有成熟的临床工具来预测跌倒。我们使用基于人工智能的新型身体成分算法,利用偶然的CT数据来帮助确定患者未来的跌倒风险。