Del Vecchio Giulia, Rodríguez-Fuentes Gabriela, Rosas Carlos, Mascaró Maite
Posgrado en Ciencias del Mar y Limnología, Facultad de Ciencias Universidad Nacional Autónoma de México Sisal Yucatan Mexico.
Unidad de Química en Sisal, Facultad de Química Universidad Nacional Autónoma de México Sisal Yucatan Mexico.
Ecol Evol. 2024 Feb 20;14(2):e10977. doi: 10.1002/ece3.10977. eCollection 2024 Feb.
Behavioural, physiological and biochemical mechanisms constitute the adaptive capacities that allow marine ectotherms to explore the environment beyond their thermal optimal. Limitations to the efficiency of these mechanisms define the transition from moderate to severe thermal stress, and serve to characterise the thermoregulatory response in the zone of thermal tolerance. We selected a tropical population of to describe the timing of the physiological and biochemical mechanisms in response to the following increments in water temperature: (i) 4°C abrupt (26-30°C in <5 min); (ii) 7°C abrupt (26-33°C); (iii) 4°C gradual (1°C every 3 h) and (iv) 7°C gradual (1.5°C every 3 h). The routine metabolic rate () of juvenile . was measured immediately before and after 0.5, 12 and 28 h of being exposed to each thermal treatment. Samples of muscle and abdominal organs were taken to quantify indicators of aerobic and anaerobic metabolism and antioxidant enzymes and oxidative stress at each moment throughout exposure. Results showed a full thermoregulatory response within 0.5 h: increased in direct correspondence with both the magnitude and rate of thermal increase; peroxidised lipids rapidly accumulated before the antioxidant defence was activated and early lactate concentrations suggested an immediate, yet temporary, reduction in aerobic scope. After 12 h, had decreased in sea horses exposed to 30°C, but not to 33°C, where continued high until the end of trials. Within 28 h of thermal exposure, all metabolite and antioxidant defence indicators had been restored to control levels (26°C). These findings testify to the outstanding thermal plasticity of . and explain their adjustment to rapid fluctuations in ambient temperature. Such features, however, do not protect this tropical population from the deleterious effects of chronic exposure to temperatures that have been predicted for the future.
行为、生理和生化机制构成了使海洋变温动物能够探索超出其热最适范围环境的适应能力。这些机制效率的限制界定了从中度热应激到严重热应激的转变,并用于表征热耐受区内的体温调节反应。我们选择了一个热带海马种群,以描述其生理和生化机制对水温以下升高的反应时间:(i) 4°C 急剧升高(在 <5 分钟内从 26°C 升至 30°C);(ii) 7°C 急剧升高(从 26°C 升至 33°C);(iii) 4°C 逐渐升高(每 3 小时升高 1°C)和 (iv) 7°C 逐渐升高(每 3 小时升高 1.5°C)。在暴露于每种热处理 0.5、12 和 28 小时之前和之后,立即测量幼年海马的常规代谢率()。在整个暴露过程中的每个时刻,采集肌肉和腹部器官样本以量化有氧和无氧代谢指标、抗氧化酶以及氧化应激。结果显示在 0.5 小时内出现了完整的体温调节反应:代谢率与热升高的幅度和速率直接对应增加;在抗氧化防御被激活之前,过氧化脂质迅速积累,早期乳酸浓度表明有氧范围立即但暂时降低。12 小时后,暴露于 30°C 的海马代谢率下降,但暴露于 33°C 的海马代谢率未下降,在试验结束前一直保持较高水平。在热暴露 28 小时内,所有代谢物和抗氧化防御指标都恢复到了对照水平(26°C)。这些发现证明了海马具有出色的热可塑性,并解释了它们对环境温度快速波动的适应性。然而,这些特征并不能保护这个热带种群免受未来预测的长期温度升高的有害影响。
Comp Biochem Physiol B Biochem Mol Biol. 2022
J Vis Exp. 2023-5-26
Comp Biochem Physiol A Mol Integr Physiol. 2002-8
Comp Biochem Physiol B Biochem Mol Biol. 2022
Proc Natl Acad Sci U S A. 2020-2-10