Suppr超能文献

用于少样本分子性质预测的属性感知关系网络

Property-Aware Relation Networks for Few-Shot Molecular Property Prediction.

作者信息

Yao Quanming, Shen Zhenqian, Wang Yaqing, Dou Dejing

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Aug;46(8):5413-5429. doi: 10.1109/TPAMI.2024.3368090. Epub 2024 Jul 2.

Abstract

Molecular property prediction plays a fundamental role in AI-aided drug discovery to identify candidate molecules, which is also essentially a few-shot problem due to lack of labeled data. In this paper, we propose Property-Aware Relation networks (PAR) to handle this problem. We first introduce a property-aware molecular encoder to transform the generic molecular embeddings to property-aware ones. Then, we design a query-dependent relation graph learning module to estimate molecular relation graph and refine molecular embeddings w.r.t. the target property. Thus, the facts that both property-related information and relationships among molecules change across different properties are utilized to better learn and propagate molecular embeddings. Generally, PAR can be regarded as a combination of metric-based and optimization-based few-shot learning method. We further extend PAR to Transferable PAR (T-PAR) to handle the distribution shift, which is common in drug discovery. The keys are joint sampling and relation graph learning schemes, which simultaneously learn molecular embeddings from both source and target domains. Extensive results on benchmark datasets show that PAR and T-PAR consistently outperform existing methods on few-shot and transferable few-shot molecular property prediction tasks, respectively. Besides, ablation and case studies are conducted to validate the rationality of our designs in PAR and T-PAR.

摘要

分子性质预测在人工智能辅助药物发现中起着识别候选分子的基础作用,由于缺乏标记数据,这本质上也是一个少样本问题。在本文中,我们提出了属性感知关系网络(PAR)来处理这个问题。我们首先引入一个属性感知分子编码器,将通用分子嵌入转换为属性感知嵌入。然后,我们设计了一个查询依赖关系图学习模块来估计分子关系图,并根据目标属性细化分子嵌入。因此,与属性相关的信息以及分子之间的关系在不同属性间变化这一事实被用于更好地学习和传播分子嵌入。一般来说,PAR可以被视为基于度量和基于优化的少样本学习方法的结合。我们进一步将PAR扩展为可转移PAR(T-PAR)来处理药物发现中常见的分布偏移。关键在于联合采样和关系图学习方案,它们同时从源域和目标域学习分子嵌入。在基准数据集上的大量结果表明,PAR和T-PAR分别在少样本和可转移少样本分子性质预测任务上始终优于现有方法。此外,还进行了消融实验和案例研究,以验证我们在PAR和T-PAR中设计的合理性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验