Suppr超能文献

基于干扰滤波和动态不确定性挖掘的息肉分割。

Polyp segmentation with interference filtering and dynamic uncertainty mining.

机构信息

Northeastern University, Shenyang 110819, People's Republic of China.

DUT Artificial Intelligence Institute, Dalian 116024, People's Republic of China.

出版信息

Phys Med Biol. 2024 Mar 26;69(7). doi: 10.1088/1361-6560/ad2b94.

Abstract

Accurate polyp segmentation from colo-noscopy images plays a crucial role in the early diagnosis and treatment of colorectal cancer. However, existing polyp segmentation methods are inevitably affected by various image noises, such as reflections, motion blur, and feces, which significantly affect the performance and generalization of the model. In addition, coupled with ambiguous boundaries between polyps and surrounding tissue, i.e. small inter-class differences, accurate polyp segmentation remains a challenging problem.To address these issues, we propose a novel two-stage polyp segmentation method that leverages a preprocessing sub-network (Pre-Net) and a dynamic uncertainty mining network (DUMNet) to improve the accuracy of polyp segmentation. Pre-Net identifies and filters out interference regions before feeding the colonoscopy images to the polyp segmentation network DUMNet. Considering the confusing polyp boundaries, DUMNet employs the uncertainty mining module (UMM) to dynamically focus on foreground, background, and uncertain regions based on different pixel confidences. UMM helps to mine and enhance more detailed context, leading to coarse-to-fine polyp segmentation and precise localization of polyp regions.We conduct experiments on five popular polyp segmentation benchmarks: ETIS, CVC-ClinicDB, CVC-ColonDB, EndoScene, and Kvasir. Our method achieves state-of-the-art performance. Furthermore, the proposed Pre-Net has strong portability and can improve the accuracy of existing polyp segmentation models.The proposed method improves polyp segmentation performance by eliminating interference and mining uncertain regions. This aids doctors in making precise and reduces the risk of colorectal cancer. Our code will be released athttps://github.com/zyh5119232/DUMNet.

摘要

从结肠镜图像中准确地分割息肉对于结直肠癌的早期诊断和治疗至关重要。然而,现有的息肉分割方法不可避免地受到各种图像噪声的影响,例如反射、运动模糊和粪便,这会显著影响模型的性能和泛化能力。此外,加上息肉与周围组织之间的边界模糊,即小的类间差异,准确的息肉分割仍然是一个具有挑战性的问题。

为了解决这些问题,我们提出了一种新颖的两阶段息肉分割方法,利用预处理子网络(Pre-Net)和动态不确定性挖掘网络(DUMNet)来提高息肉分割的准确性。Pre-Net 在将结肠镜图像输入到息肉分割网络 DUMNet 之前,识别和过滤干扰区域。考虑到混淆的息肉边界,DUMNet 使用不确定性挖掘模块(UMM)根据不同像素的置信度,动态地关注前景、背景和不确定区域。UMM 有助于挖掘和增强更详细的上下文,从而实现从粗到精的息肉分割和息肉区域的精确定位。

我们在五个流行的息肉分割基准上进行了实验

ETIS、CVC-ClinicDB、CVC-ColonDB、EndoScene 和 Kvasir。我们的方法取得了最先进的性能。此外,所提出的 Pre-Net 具有很强的可移植性,可以提高现有的息肉分割模型的准确性。

所提出的方法通过消除干扰和挖掘不确定区域来提高息肉分割性能。这有助于医生进行精确的诊断,降低结直肠癌的风险。我们的代码将在 https://github.com/zyh5119232/DUMNet 上发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验