Wang Zitong, Wang Zeyi, Sun Pengyu
Imperial College London, London, South Kensington, United Kingdom.
Queen Mary University of London, London, Bethnal Green, United Kingdom.
PeerJ Comput Sci. 2025 May 28;11:e2924. doi: 10.7717/peerj-cs.2924. eCollection 2025.
One of the biggest hazards to cancer-related mortality globally is colorectal cancer, and improved patient outcomes are greatly influenced by early identification. Colonoscopy is a highly effective screening method, yet segmentation and detection remain challenging aspects due to the heterogeneity and variability of readers' interpretations of polyps. In this work, we introduce a novel deep learning architecture for gastrointestinal polyp segmentation in the Kvasir-SEG dataset. Our method employs an encoder-decoder structure with a pre-trained ConvNeXt model as the encoder to learn multi-scale feature representations. The feature maps are passed through a ConvNeXt Block and then through a decoder network consisting of three decoder blocks. Our key contribution is the employment of a cross-attention mechanism that creates shortcut connections between the decoder and encoder to maximize feature retention and reduce information loss. In addition, we introduce a Residual Transformer Block in the decoder that learns long-term dependency by using self-attention mechanisms and enhance feature representations. We evaluate our model on the Kvasir-SEG dataset, achieving a Dice coefficient of 0.8715 and mean intersection over union (mIoU) of 0.8021. Our methodology demonstrates state-of-the-art performance in gastrointestinal polyp segmentation and its feasibility of being used as part of clinical pipelines to assist with automated detection and diagnosis of polyps.
全球与癌症相关死亡率的最大危害之一是结直肠癌,早期识别对改善患者预后有很大影响。结肠镜检查是一种高效的筛查方法,但由于息肉的读者解读存在异质性和变异性,分割和检测仍然是具有挑战性的方面。在这项工作中,我们在Kvasir-SEG数据集中引入了一种用于胃肠道息肉分割的新型深度学习架构。我们的方法采用编码器-解码器结构,以预训练的ConvNeXt模型作为编码器来学习多尺度特征表示。特征图通过一个ConvNeXt块,然后通过一个由三个解码器块组成的解码器网络。我们的关键贡献是采用了一种交叉注意力机制,该机制在解码器和编码器之间创建捷径连接,以最大限度地保留特征并减少信息损失。此外,我们在解码器中引入了一个残差Transformer块,该块通过使用自注意力机制学习长期依赖性并增强特征表示。我们在Kvasir-SEG数据集上评估我们的模型,获得了0.8715的Dice系数和0.8021的平均交并比(mIoU)。我们的方法在胃肠道息肉分割中展示了当前的最优性能,以及作为临床流程一部分用于辅助息肉自动检测和诊断的可行性。