Suppr超能文献

用于胃肠道息肉分割的深度学习模型。

Deep learning model for gastrointestinal polyp segmentation.

作者信息

Wang Zitong, Wang Zeyi, Sun Pengyu

机构信息

Imperial College London, London, South Kensington, United Kingdom.

Queen Mary University of London, London, Bethnal Green, United Kingdom.

出版信息

PeerJ Comput Sci. 2025 May 28;11:e2924. doi: 10.7717/peerj-cs.2924. eCollection 2025.

Abstract

One of the biggest hazards to cancer-related mortality globally is colorectal cancer, and improved patient outcomes are greatly influenced by early identification. Colonoscopy is a highly effective screening method, yet segmentation and detection remain challenging aspects due to the heterogeneity and variability of readers' interpretations of polyps. In this work, we introduce a novel deep learning architecture for gastrointestinal polyp segmentation in the Kvasir-SEG dataset. Our method employs an encoder-decoder structure with a pre-trained ConvNeXt model as the encoder to learn multi-scale feature representations. The feature maps are passed through a ConvNeXt Block and then through a decoder network consisting of three decoder blocks. Our key contribution is the employment of a cross-attention mechanism that creates shortcut connections between the decoder and encoder to maximize feature retention and reduce information loss. In addition, we introduce a Residual Transformer Block in the decoder that learns long-term dependency by using self-attention mechanisms and enhance feature representations. We evaluate our model on the Kvasir-SEG dataset, achieving a Dice coefficient of 0.8715 and mean intersection over union (mIoU) of 0.8021. Our methodology demonstrates state-of-the-art performance in gastrointestinal polyp segmentation and its feasibility of being used as part of clinical pipelines to assist with automated detection and diagnosis of polyps.

摘要

全球与癌症相关死亡率的最大危害之一是结直肠癌,早期识别对改善患者预后有很大影响。结肠镜检查是一种高效的筛查方法,但由于息肉的读者解读存在异质性和变异性,分割和检测仍然是具有挑战性的方面。在这项工作中,我们在Kvasir-SEG数据集中引入了一种用于胃肠道息肉分割的新型深度学习架构。我们的方法采用编码器-解码器结构,以预训练的ConvNeXt模型作为编码器来学习多尺度特征表示。特征图通过一个ConvNeXt块,然后通过一个由三个解码器块组成的解码器网络。我们的关键贡献是采用了一种交叉注意力机制,该机制在解码器和编码器之间创建捷径连接,以最大限度地保留特征并减少信息损失。此外,我们在解码器中引入了一个残差Transformer块,该块通过使用自注意力机制学习长期依赖性并增强特征表示。我们在Kvasir-SEG数据集上评估我们的模型,获得了0.8715的Dice系数和0.8021的平均交并比(mIoU)。我们的方法在胃肠道息肉分割中展示了当前的最优性能,以及作为临床流程一部分用于辅助息肉自动检测和诊断的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485b/12192692/ac9218fd19d7/peerj-cs-11-2924-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验