School of Environmental Sciences, University of Liverpool, Liverpool, UK.
School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, UK.
Ecol Lett. 2024 Feb;27(2):e14389. doi: 10.1111/ele.14389.
Metabolism underpins all life-sustaining processes and varies profoundly with body size, temperature and locomotor activity. A current theory explains some of the size-dependence of metabolic rate (its mass exponent, b) through changes in metabolic level (L). We propose two predictive advances that: (a) combine the above theory with the evolved avoidance of oxygen limitation in water-breathers experiencing warming, and (b) quantify the overall magnitude of combined temperatures and degrees of locomotion on metabolic scaling across air- and water-breathers. We use intraspecific metabolic scaling responses to temperature (523 regressions) and activity (281 regressions) in diverse ectothermic vertebrates (fish, reptiles and amphibians) to show that b decreases with temperature-increased L in water-breathers, supporting surface area-related avoidance of oxygen limitation, whereas b increases with activity-increased L in air-breathers, following volume-related influences. This new theoretical integration quantitatively incorporates different influences (warming, locomotion) and respiration modes (aquatic, terrestrial) on animal energetics.
新陈代谢是所有维持生命的过程的基础,其变化与体型、温度和运动活性有很大关系。目前的理论通过代谢水平(L)的变化来解释代谢率(质量指数,b)的一些体型依赖性。我们提出了两个预测性的进展:(a)将上述理论与在经历升温时避免水中生物氧气限制的进化相结合,以及(b)量化空气呼吸和水呼吸动物的综合温度和运动程度对代谢比例的整体影响。我们使用不同变温动物(鱼类、爬行动物和两栖动物)的对温度(523 个回归)和活性(281 个回归)的种内代谢比例响应,表明在水中呼吸动物中,b 随温度升高而降低,支持与表面积相关的避免氧气限制,而在空气呼吸动物中,b 随活性升高而增加,这与体积相关的影响有关。这种新的理论整合定量地将不同的影响(升温、活动)和呼吸模式(水生、陆生)纳入动物能量学中。