Suppr超能文献

身体成分参数无法预测接受自体干细胞移植的多发性骨髓瘤患者的生存率。

Parameters of body composition do not predict survival in patients with multiple myeloma undergoing autologous stem cell transplantation.

作者信息

Barajas Ordonez Felix, Wolleschak Denise, Zeller Yannic, Hinnerichs Mattes, Rodríguez-Feria Pablo, Aghayev Anar, Mikusko Martin, Borggrefe Jan, Mougiakakos Dimitrios, Surov Alexey

机构信息

University Clinic for Radiology and Nuclear Medicine, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.

Department of Diagnostic and Interventional Radiology, University Hospital RWTH, Aachen, Germany.

出版信息

Leuk Lymphoma. 2024 Jun;65(6):825-832. doi: 10.1080/10428194.2024.2319226. Epub 2024 Feb 21.

Abstract

Studies regarding the influence of body composition parameters as predictors on overall survival (OS) in patients with multiple myeloma (MM) are scarce. OS and progression-free survival (PFS) were retrospectively assessed in 129 patients with MM undergoing autologous stem cell transplantation (ASCT) after a follow-up of 2 years. A computed tomography (CT) based semi-automated assessment of body composition was performed. No statistically significant differences were noted in 2-year OS, PFS, or post-transplant adverse events in the body composition groups of subcutaneous adipose tissue (SAT) (low vs. high-SAT), visceral adipose tissue (VAT) (low vs. high-VAT), visceral-to-subcutaneous fat ratio (VSR) (low vs. high VSR), and sarcopenia in terms of skeletal muscle index (SMI) (non-sarcopenic vs. sarcopenic). In conclusion, adipose and muscle tissue do not limit OS or affect the PFS in patients with MM undergoing ASCT.

摘要

关于身体成分参数作为多发性骨髓瘤(MM)患者总生存期(OS)预测指标的影响的研究很少。对129例接受自体干细胞移植(ASCT)的MM患者进行了2年随访,回顾性评估其总生存期(OS)和无进展生存期(PFS)。采用基于计算机断层扫描(CT)的身体成分半自动评估方法。皮下脂肪组织(SAT)(低SAT组与高SAT组)、内脏脂肪组织(VAT)(低VAT组与高VAT组)、内脏与皮下脂肪比率(VSR)(低VSR组与高VSR组)以及根据骨骼肌指数(SMI)定义的肌肉减少症(非肌肉减少症组与肌肉减少症组)的身体成分组在2年总生存期、无进展生存期或移植后不良事件方面均未观察到统计学上的显著差异。总之,脂肪和肌肉组织并不限制接受ASCT的MM患者的总生存期,也不影响其无进展生存期。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验