iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
Associate Laboratory i4HB - Institute for Health and Bioeconomy, Avenida. Rovisco Pais, Lisboa 1049-001, Portugal.
J Mater Chem B. 2024 Mar 13;12(11):2771-2794. doi: 10.1039/d3tb02673f.
In this work, we propose a simple, reliable, and versatile strategy to create 3D electroconductive scaffolds suitable for bone tissue engineering (TE) applications with electrical stimulation (ES). The proposed scaffolds are made of 3D-extruded poly(ε-caprolactone) (PCL), subjected to alkaline treatment, and of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), anchored to PCL with one of two different crosslinkers: (3-glycidyloxypropyl)trimethoxysilane (GOPS) and divinyl sulfone (DVS). Both cross-linkers allowed the formation of a homogenous and continuous coating of PEDOT:PSS to PCL. We show that these PEDOT:PSS coatings are electroconductive (11.3-20.1 S cm), stable (up to 21 days in saline solution), and allow the immobilization of gelatin (Gel) to further improve bioactivity. mineralization of the corresponding 3D conductive scaffolds was greatly enhanced (GOPS(NaOH)-Gel - 3.1 fold, DVS(NaOH)-Gel - 2.0 fold) and cell colonization and proliferation were the highest for the DVS(NaOH)-Gel scaffold. modelling of ES application in DVS(NaOH)-Gel scaffolds indicates that the electrical field distribution is homogeneous, which reduces the probability of formation of faradaic products. Osteogenic differentiation of human bone marrow derived mesenchymal stem/stromal cells (hBM-MSCs) was performed under ES. Importantly, our results clearly demonstrated a synergistic effect of scaffold electroconductivity and ES on the enhancement of MSC osteogenic differentiation, particularly on cell-secreted calcium deposition and the upregulation of osteogenic gene markers such as , and . These scaffolds hold promise for future clinical applications, including manufacturing of personalized bone TE grafts for transplantation with enhanced maturation/functionality or bioelectronic devices.
在这项工作中,我们提出了一种简单、可靠且多功能的策略,用于创建适用于骨组织工程 (TE) 应用的 3D 导电支架,并结合电刺激 (ES)。所提出的支架由 3D 挤出的聚己内酯 (PCL) 制成,经过碱性处理,并由聚 (3,4-亚乙基二氧噻吩):聚 (苯乙烯磺酸盐) (PEDOT:PSS) 组成,通过两种不同的交联剂之一与 PCL 相连:(3-缩水甘油氧基丙基)三甲氧基硅烷 (GOPS) 和二乙烯砜 (DVS)。这两种交联剂都允许形成均匀且连续的 PEDOT:PSS 涂层到 PCL。我们表明,这些 PEDOT:PSS 涂层具有导电性(11.3-20.1 S cm)、稳定性(在盐溶液中长达 21 天),并允许明胶 (Gel) 的固定化以进一步提高生物活性。相应的 3D 导电支架的矿化得到了极大的增强(GOPS(NaOH)-Gel - 3.1 倍,DVS(NaOH)-Gel - 2.0 倍),并且 DVS(NaOH)-Gel 支架的细胞定植和增殖最高。对 DVS(NaOH)-Gel 支架中 ES 应用的建模表明,电场分布均匀,从而降低了形成法拉第产物的可能性。在 ES 下对人骨髓间充质干细胞/基质细胞 (hBM-MSCs) 进行成骨分化。重要的是,我们的结果清楚地表明支架导电性和 ES 对增强 MSC 成骨分化的协同作用,特别是对细胞分泌的钙沉积和上调成骨基因标志物如 、 和 。这些支架有望在未来的临床应用中得到应用,包括制造用于移植的个性化骨 TE 移植物,以提高成熟度/功能或生物电子设备。