Suppr超能文献

基于转录组和代谢组分析,一氧化氮通过调节大叶藻的渗透平衡、抗氧化防御和离子稳态来增强其对高盐环境的适应性。

NO enhances the adaptability to high-salt environments by regulating osmotic balance, antioxidant defense, and ion homeostasis in eelgrass based on transcriptome and metabolome analysis.

作者信息

Wang Xianyan, Wang Tongtong, Yu Pei, Li Yuchun, Lv Xinfang

机构信息

Marine College, Shandong University, Weihai, China.

Shandong University-Australian National University (SDU-ANU) Joint Science College, Shandong University, Weihai, China.

出版信息

Front Plant Sci. 2024 Feb 7;15:1343154. doi: 10.3389/fpls.2024.1343154. eCollection 2024.

Abstract

INTRODUCTION

Eelgrass is a typical marine angiosperm that exhibits strong adaptability to high-salt environments. Previous studies have shown that various growth and physiological indicators were significantly affected after the nitrate reductase (NR) pathway for nitric oxide (NO) synthesis in eelgrass was blocked.

METHODS

To analyze the molecular mechanism of NO on the adaptability to high-salt environment in eelgrass, we treated eelgrass with artificial seawater (control group) and artificial seawater with 1 mM/L NaWO (experimental group). Based on transcriptomics and metabolomics, we explored the molecular mechanism of NO affecting the salt tolerance of eelgrass.

RESULTS

We obtained 326, 368, and 859 differentially expressed genes (DEGs) by transcriptome sequencing in eelgrass roots, stems, and leaves, respectively. Meanwhile, we obtained 63, 52, and 36 differentially accumulated metabolites (DAMs) by metabolomics in roots, stems, and leaves, respectively. Finally, through the combined analysis of transcriptome and metabolome, we found that the NO regulatory mechanism of roots and leaves of eelgrass is similar to that of terrestrial plants, while the regulatory mechanism of stems has similar and unique features.

DISCUSSION

NO in eelgrass roots regulates osmotic balance and antioxidant defense by affecting genes in transmembrane transport and jasmonic acid-related pathways to improve the adaptability of eelgrass to high-salt environments. NO in eelgrass leaves regulates the downstream antioxidant defense system by affecting the signal transduction of plant hormones. NO in the stems of eelgrass regulates ion homeostasis by affecting genes related to ion homeostasis to enhance the adaptability of eelgrass to high-salt environments. Differently, after the NO synthesis was inhibited, the glyoxylate and dicarboxylate metabolism, as well as the tricarboxylic acid (TCA) cycle, was regulated by glucose metabolism as a complementary effect to cope with the high-salt environment in the stems of eelgrass. These are studies on the regulatory mechanism of NO in eelgrass, providing a theoretical basis for the study of the salt tolerance mechanism of marine plants and the improvement of terrestrial crop traits. The key genes discovered in this study can be applied to increase salt tolerance in terrestrial crops through cloning and molecular breeding methods in the future.

摘要

引言

鳗草是一种典型的海洋被子植物,对高盐环境具有很强的适应性。先前的研究表明,鳗草中一氧化氮(NO)合成的硝酸还原酶(NR)途径被阻断后,其各种生长和生理指标均受到显著影响。

方法

为了分析NO对鳗草适应高盐环境的分子机制,我们用人工海水(对照组)和添加1 mM/L NaWO的人工海水(实验组)处理鳗草。基于转录组学和代谢组学,我们探究了NO影响鳗草耐盐性的分子机制。

结果

通过转录组测序,我们在鳗草的根、茎和叶中分别获得了326、368和859个差异表达基因(DEG)。同时,通过代谢组学,我们在根、茎和叶中分别获得了63、52和36个差异积累代谢物(DAM)。最后,通过转录组和代谢组的联合分析,我们发现鳗草根和叶的NO调控机制与陆地植物相似,而茎的调控机制既有相似之处又有独特特征。

讨论

鳗草根中的NO通过影响跨膜运输和茉莉酸相关途径中的基因来调节渗透平衡和抗氧化防御,从而提高鳗草对高盐环境的适应性。鳗草叶中的NO通过影响植物激素的信号转导来调节下游抗氧化防御系统。鳗草茎中的NO通过影响与离子稳态相关的基因来调节离子稳态,以增强鳗草对高盐环境的适应性。不同的是,在NO合成被抑制后,乙醛酸和二羧酸代谢以及三羧酸(TCA)循环通过葡萄糖代谢进行调节,作为一种互补效应来应对鳗草茎中的高盐环境。这些是关于NO在鳗草中调控机制的研究,为海洋植物耐盐机制的研究和陆地作物性状的改良提供了理论依据。本研究中发现的关键基因未来可通过克隆和分子育种方法应用于提高陆地作物的耐盐性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91bd/10880190/9b8f20651ae3/fpls-15-1343154-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验