Smith Patrick W, Hrubý Jakub, Evans William J, Hill Stephen, Minasian Stefan G
Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States.
National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States.
J Am Chem Soc. 2024 Mar 6;146(9):5781-5785. doi: 10.1021/jacs.3c12725. Epub 2024 Feb 22.
Molecular qubits offer an attractive basis for quantum information processing, but challenges remain with regard to sustained coherence. Qubits based on clock transitions offer a method to improve the coherence times. We propose a general strategy for identifying molecules with high-frequency clock transitions in systems where a d electron is coupled to a crystal-field singlet state of an f configuration, resulting in an = ±1/2 ground state with strong hyperfine coupling. Using this approach, a 9.834 GHz clock transition was identified in a molecular Pr complex, [K(crypt)][Cp'Pr], leading to 3-fold enhancements in relative to other transitions in the spectrum. This result indicates the promise of the design principles outlined here for the further development of f-element systems for quantum information applications.
分子量子比特为量子信息处理提供了一个有吸引力的基础,但在持续相干性方面仍然存在挑战。基于时钟跃迁的量子比特提供了一种延长相干时间的方法。我们提出了一种通用策略,用于在d电子与f组态的晶体场单重态耦合的系统中识别具有高频时钟跃迁的分子,从而产生具有强超精细耦合的(J = ±1/2)基态。使用这种方法,在分子Pr配合物([K(crypt)][Cp'Pr])中识别出了9.834 GHz的时钟跃迁,相对于光谱中的其他跃迁,其(T_2)增强了3倍。这一结果表明,本文概述的设计原则对于进一步开发用于量子信息应用的f元素系统具有前景。