Applied Phycology and Biotechnology Division, CSIR Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
Applied Phycology and Biotechnology Division, CSIR Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India.
Carbohydr Polym. 2024 May 1;331:121901. doi: 10.1016/j.carbpol.2024.121901. Epub 2024 Feb 1.
Carrageenans are industrially important polysaccharides with tunable viscoelastic and gelation properties. The function of polysaccharide depends on its conformation and chemical composition. However, the solution conformations of carrageenans are highly debated, and the structure-function relationship remains elusive. Here, we have studied the intrinsic conformational behavior of a series of carrageenan hexamers in solution, using extensive all-atom classical MD and enhanced sampling. Our findings comprehensively delineate that carrageenans containing the 3,6-anhydrous bridge (κ-C, ι-C, θ-C, and non-sulfated β-C) adopt compact helical structures as their predominant conformation in solution, whereas carrageenans without the bridge (μ-C, ν-C, and λ-C) remain as extended loosely packed helices; opposing the 'coil-to-helix' paradigm. Glycosidic linkages access a few allowed orientations. We hypothesize that the 3,6-anhydrous bridge, irrespective of carrageenan's sulfation pattern, is essential for stabilizing the helical conformation at the single-chain level. It provides necessary flexibility to the glycosidic linkage to sample conformations close to the experimentally derived helical structure and also prevents the sugar ring flipping. Sulfate groups mainly modify the chain stiffness due to steric and stereo-electronic effects and participate in hydrogen bonding. Such atomistic insights will be helpful for understanding the differential gelation mechanisms of carrageenans and fine-tuning polysaccharide backbone for various industrial applications.
卡拉胶是具有可调节的粘弹性和凝胶化特性的工业上重要的多糖。多糖的功能取决于其构象和化学组成。然而,卡拉胶的溶液构象存在很大争议,其结构-功能关系仍难以捉摸。在这里,我们使用广泛的全原子经典 MD 和增强采样研究了一系列卡拉胶六聚体在溶液中的固有构象行为。我们的研究结果全面描述了含有 3,6-无水桥(κ-C、ι-C、θ-C 和非硫酸化β-C)的卡拉胶在溶液中优先采用紧凑的螺旋结构作为其主要构象,而没有桥的卡拉胶(μ-C、ν-C 和 λ-C)保持扩展的松散包装螺旋;与“螺旋卷曲”范式相反。糖苷键可以采用几种允许的取向。我们假设 3,6-无水桥,无论卡拉胶的硫酸化模式如何,对于稳定单链水平的螺旋构象都是必不可少的。它为糖苷键提供了必要的灵活性,以接近实验得出的螺旋结构采样构象,并防止糖环翻转。硫酸根主要通过空间和立体电子效应改变链的刚性,并参与氢键形成。这种原子水平的见解将有助于理解卡拉胶的差异凝胶化机制,并为各种工业应用精细调整多糖主链。