Suppr超能文献

使用无监督机器学习识别多发性硬化症患者未满足的需求的明确模式。

Identifying definite patterns of unmet needs in patients with multiple sclerosis using unsupervised machine learning.

机构信息

Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Via Pansini 5, 80131, Naples, Italy.

Department of Brain Sciences, Imperial College London, London, W120BZ, UK.

出版信息

Neurol Sci. 2024 Jul;45(7):3333-3345. doi: 10.1007/s10072-024-07416-9. Epub 2024 Feb 23.

Abstract

INTRODUCTION

People with multiple sclerosis (PwMS) exhibit a spectrum of needs that extend beyond solely disease-related determinants. Investigating unmet needs from the patient perspective may address daily difficulties and optimize care. Our aim was to identify patterns of unmet needs among PwMS and their determinants.

METHODS

We conducted a cross-sectional multicentre study. Data were collected through an anonymous, self-administered online form. To cluster PwMS according to their main unmet needs, we performed agglomerative hierarchical clustering algorithm. Principal component analysis (PCA) was applied to visualize cluster distribution. Pairwise comparisons were used to evaluate demographics and clinical distribution among clusters.

RESULTS

Out of 1764 mailed questionnaires, we received 690 responses. Access to primary care was the main contributor to the overall unmet need burden. Four patterns were identified: cluster C1, 'information-seekers with few unmet needs'; cluster C2, 'high unmet needs'; cluster C3, 'socially and assistance-dependent'; cluster C4, 'self-sufficient with few unmet needs'. PCA identified two main components in determining the patterns: the 'public sphere' (access to information and care) and the 'private sphere' (need for assistance and social life). Older age, lower education, longer disease duration and higher disability characterized clusters with more unmet needs in the private sphere. However, demographic and clinical factors failed in explaining the four identified patterns.

CONCLUSION

Our study identified four unmet need patterns among PwMS, emphasizing the importance of personalized care. While clinical and demographic factors provide some insight, additional variables warrant further investigation to fully understand unmet needs in PwMS.

摘要

简介

多发性硬化症患者(PwMS)表现出一系列的需求,这些需求不仅限于与疾病相关的决定因素。从患者角度调查未满足的需求可能会解决日常困难并优化护理。我们的目的是确定 PwMS 未满足需求的模式及其决定因素。

方法

我们进行了一项横断面多中心研究。通过匿名的在线自我管理表格收集数据。为了根据 PwMS 的主要未满足需求对其进行聚类,我们使用了凝聚层次聚类算法。应用主成分分析(PCA)可视化聚类分布。进行两两比较以评估聚类之间的人口统计学和临床分布。

结果

在寄出的 1764 份问卷中,我们收到了 690 份回复。获得初级保健是整体未满足需求负担的主要贡献者。确定了四个模式:集群 C1,“信息寻求者,需求很少”;集群 C2,“高未满足需求”;集群 C3,“社会和援助依赖”;集群 C4,“自给自足,需求很少”。PCA 确定了确定模式的两个主要因素:“公共领域”(信息和护理的获取)和“私人领域”(援助和社会生活的需求)。在私人领域,年龄较大、教育程度较低、疾病持续时间较长和残疾程度较高的患者的未满足需求特征更为明显。然而,人口统计学和临床因素无法解释这四个确定的模式。

结论

我们的研究确定了 PwMS 中的四种未满足需求模式,强调了个性化护理的重要性。虽然临床和人口统计学因素提供了一些见解,但需要进一步研究其他变量,以充分了解 PwMS 中的未满足需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验