Suppr超能文献

肠道微生物群、免疫细胞与吗啡耐受性之间的遗传支持因果关系:一项两样本孟德尔随机化研究

Genetically supported causality between gut microbiota, immune cells and morphine tolerance: a two-sample Mendelian randomization study.

作者信息

Han Shuai, Gao Jiapei, Wang Zi, Xiao Yinggang, Ge Yali, Liang Yongxin, Gao Ju

机构信息

Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China.

Yangzhou University Medical College, Yangzhou, China.

出版信息

Front Microbiol. 2024 Feb 8;15:1343763. doi: 10.3389/fmicb.2024.1343763. eCollection 2024.

Abstract

BACKGROUND

Previous researches have suggested a significant connection between the gut microbiota/immune cells and morphine tolerance (MT), but there is still uncertainty regarding their causal relationship. Hence, our objective is to inverstigate this causal association and reveal the impact of gut microbiota/immune cells on the risk of developing MT using a two-sample Mendelian randomization (MR) study.

METHODS

We conducted a comprehensive analysis using genome-wide association study (GWAS) summary statistics for gut microbiota, immune cells, and MT. The main approach employed was the inverse variance-weighted (IVW) method in MR. To assess horizontal pleiotropy and remove outlier single-nucleotide polymorphisms (SNPs), we utilized the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) technique as well as MR-Egger regression. Heterogeneity detection was performed using Cochran's -test. Additionally, leave-one-out analysis was carried out to determine if any single SNP drove the causal association signals. Finally, we conducted a reverse MR to evaluate the potential of reverse causation.

RESULTS

We discovered that 6 gut microbial taxa and 16 immune cells were causally related to MT ( < 0.05). Among them, 2 bacterial features and 9 immunophenotypes retained a strong causal relationship with lower risk of MT: genus. (OR: 0.962, 95% CI: 0.940-0.987, = 0.030), genus. (OR: 0.960, 95% CI: 0.946-0.976, = 0.003), BAFF-R on B cell (OR: 0.972, 95% CI: 0.947-0.998, = 0.013). Furthermore, 4 bacterial features and 7 immunophenotypes were identified to be significantly associated with MT risk: genus. (OR: 1.044, 95% CI: 1.017-1.069, = 0.029), genus. (OR: 1.054, 95% CI: 1.020-1.090, = 0.037), B cell % CD3-lymphocyte (OR: 1.976, 95% CI: 1.027-1.129, = 0.026). The Cochrane's test revealed no heterogeneity ( > 0.05). Furthermore, the MR-Egger and MR-PRESSO analyses reveal no instances of horizontal pleiotropy ( > 0.05). Besides, leave-one-out analysis confirmed the robustness of MR results. After adding BMI to the multivariate MR analysis, the gut microbial taxa and immune cells exposure-outcome effect were attenuated.

CONCLUSION

Our research confirm the potential link between gut microbiota and immune cells with MT, shedding light on the mechanism by which gut microbiota and immune cells may contribute to MT. These findings lay the groundwork for future investigations into targeted prevention strategies.

摘要

背景

先前的研究表明肠道微生物群/免疫细胞与吗啡耐受性(MT)之间存在显著联系,但它们之间的因果关系仍不确定。因此,我们的目标是通过双样本孟德尔随机化(MR)研究来调查这种因果关联,并揭示肠道微生物群/免疫细胞对发生MT风险的影响。

方法

我们使用肠道微生物群、免疫细胞和MT的全基因组关联研究(GWAS)汇总统计数据进行了全面分析。MR中采用的主要方法是逆方差加权(IVW)法。为了评估水平多效性并去除异常单核苷酸多态性(SNP),我们使用了孟德尔随机化多效性残差和异常值(MR-PRESSO)技术以及MR-Egger回归。使用Cochran's Q检验进行异质性检测。此外,进行了留一法分析以确定是否有任何单个SNP驱动因果关联信号。最后,我们进行了反向MR以评估反向因果关系的可能性。

结果

我们发现6种肠道微生物分类群和16种免疫细胞与MT存在因果关系(P<0.05)。其中,2种细菌特征和9种免疫表型与较低的MT风险保持着强烈的因果关系:属。(比值比:0.962,95%置信区间:0.940-0.987,P=0.030),属。(比值比:0.960,95%置信区间:0.946-0.976,P=0.003),B细胞上的BAFF-R(比值比:0.972,95%置信区间:0.947-0.998,P=0.013)。此外,4种细菌特征和7种免疫表型被确定与MT风险显著相关:属。(比值比:1.044,95%置信区间:1.017-1.069,P=0.029),属。(比值比:1.054,95%置信区间:1.020-1.090,P=0.037),B细胞%CD3淋巴细胞(比值比:1.976,95%置信区间:1.027-1.129,P=0.026)。Cochrane's Q检验显示无异质性(P>0.05)。此外,MR-Egger和MR-PRESSO分析未发现水平多效性的实例(P>0.05)。此外,留一法分析证实了MR结果的稳健性。在多变量MR分析中加入BMI后,肠道微生物分类群和免疫细胞暴露-结局效应减弱。

结论

我们的研究证实了肠道微生物群和免疫细胞与MT之间的潜在联系,阐明了肠道微生物群和免疫细胞可能导致MT的机制。这些发现为未来针对性预防策略的研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6767/10882271/24e714baf034/fmicb-15-1343763-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验