Peng Jingyi, Cai Kun, Chen Guanglei, Liu Linxiao, Peng Lili
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
The First People's Hospital of Hangzhou Lin'an District, Hangzhou, Zhejiang, China.
Front Microbiol. 2024 Mar 1;15:1361927. doi: 10.3389/fmicb.2024.1361927. eCollection 2024.
In recent investigations, substantial strides have been made in the precise modulation of the gut microbiota to prevent and treat a myriad of diseases. Simultaneously, the pressing issue of widespread antibiotic resistance and multidrug resistance resulting from infections demands urgent attention. Several studies suggest that the antagonistic influence of the gut microbiota could serve as a novel avenue for impeding the colonization of pathogenic microorganisms or treating infections. However, conventional research methodologies encounter inherent challenges in identifying antagonistic microbial agents against , necessitating a comprehensive and in-depth analysis of the causal relationship between infections and the gut microbiota.
Utilizing the aggregated summary statistics from Genome-Wide Association Studies (GWAS), we conducted Mendelian Randomization (MR) analyses encompassing 18,340 participants to explore the interplay between the gut microbiota and infections. This investigation also involved 83 cases of infection patients and 336,396 control subjects. In the positive strand of our findings, we initially performed a preliminary analysis using the Inverse Variance Weighting (IVW) method. Subsequently, we undertook sensitivity analyses to assess the robustness of the results, addressing confounding factors' influence. This involved employing the Leave-One-Out method and scrutinizing funnel plots to ensure the reliability of the MR analysis outcomes. Conclusively, a reverse MR analysis was carried out, employing the Wald ratio method due to the exposure of individual Single Nucleotide Polymorphisms (SNPs). This was undertaken to explore the plausible associations between infections and genetically predicted compositions of the gut microbiota.
In this study, we employed 2,818 SNPs associated with 211 species of gut microbiota as instrumental variables (IVs). Through IVW analysis, our positive MR findings revealed a significant negative correlation between the occurrence of infections and the phylum Tenericutes (OR: 0.18, 95% CI: 0.04-0.74, = 0.02), class Mollicutes (OR: 0.18, 95% CI: 0.04-0.74, p = 0.02), genus (OR: 0.16, 95% CI: 0.04-0.63, = 0.01), genus (OR: 0.39, 95% CI: 0.16-0.93, = 0.03), and genus (OR: 0.44, 95% CI: 0.23-0.87, = 0.02). Conversely, a positive correlation was observed between the occurrence of infections and genus (OR: 10.16, 95% CI: 1.87-55.13, = 0.01) and genus (OR: 12.24, 95% CI: 1.71-87.34, = 0.01). In sensitivity analyses, utilizing MR-Egger regression analysis and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) detection, all outcomes demonstrated robust stability. Simultaneously, in the reverse MR analysis, infections resulted in an upregulation of four bacterial genera and a downregulation of three bacterial genera.
In summation, the MR analysis outcomes corroborate the presence of bidirectional causal relationships between the gut microbiota and infections. This study not only unveils novel perspectives for the prevention and treatment of infections but also furnishes fresh insights into the mechanistic underpinnings of how the gut microbiota contributes to the pathogenesis of infections. Consequently, the established dual causal association holds promise for advancing our understanding and addressing the complexities inherent in the interplay between the gut microbiota and infections, thereby paving the way for innovative therapeutic interventions and preventive strategies in the realm of -related diseases.
在最近的研究中,在精确调节肠道微生物群以预防和治疗多种疾病方面取得了重大进展。同时,由感染引起的广泛抗生素耐药性和多重耐药性这一紧迫问题亟待关注。多项研究表明,肠道微生物群的拮抗作用可能成为阻碍致病微生物定植或治疗感染的新途径。然而,传统研究方法在识别针对[具体病原体未明确]的拮抗微生物剂时面临固有挑战,因此需要对[具体病原体未明确]感染与肠道微生物群之间的因果关系进行全面深入分析。
利用全基因组关联研究(GWAS)的汇总统计数据,我们对18340名参与者进行了孟德尔随机化(MR)分析,以探讨肠道微生物群与[具体病原体未明确]感染之间的相互作用。该研究还纳入了83例[具体病原体未明确]感染患者和336396名对照受试者。在我们的研究结果的正向分析中,我们首先使用逆方差加权(IVW)方法进行了初步分析。随后,我们进行了敏感性分析,以评估结果的稳健性,解决混杂因素的影响。这包括采用留一法并检查漏斗图,以确保MR分析结果的可靠性。最后,由于个体单核苷酸多态性(SNP)的暴露,采用Wald比率法进行了反向MR分析。这是为了探索[具体病原体未明确]感染与肠道微生物群的基因预测组成之间的可能关联。
在本研究中,我们使用了与211种肠道微生物群相关的2818个SNP作为工具变量(IVs)。通过IVW分析,我们的正向MR研究结果显示,[具体病原体未明确]感染的发生与柔膜菌门(OR:0.18,95%CI:0.04 - 0.74,p = 0.02)、柔膜菌纲(OR:0.18,95%CI:0.04 - 0.74,p = 0.02)、[属名1未明确]属(OR:0.16,95%CI:0.04 - 0.63,p = 0.01)、[属名2未明确]属(OR:0.39,95%CI:0.16 - 0.93,p = 0.03)和[属名3未明确]属(OR:0.44,95%CI:0.23 - 0.87,p = 0.02)之间存在显著负相关。相反,观察到[具体病原体未明确]感染的发生与[属名4未明确]属(OR:10.16,95%CI:1.87 - 55.13,p = 0.01)和[属名5未明确]属(OR:12.24,95%CI:1.71 - 87.34,p = 0.01)之间存在正相关。在敏感性分析中,利用MR - Egger回归分析和MR多效性残差和异常值(MR - PRESSO)检测,所有结果均显示出稳健的稳定性。同时,在反向MR分析中,[具体病原体未明确]感染导致四个细菌属上调,三个细菌属下调。
总之,MR分析结果证实了肠道微生物群与[具体病原体未明确]感染之间存在双向因果关系。本研究不仅揭示了预防和治疗[具体病原体未明确]感染的新视角,还为肠道微生物群如何促成[具体病原体未明确]感染发病机制的潜在机制提供了新见解。因此,所建立的双重因果关联有望增进我们对肠道微生物群与[具体病原体未明确]感染之间相互作用内在复杂性的理解并加以应对,从而为[相关疾病未明确]领域的创新治疗干预和预防策略铺平道路。