Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK.
School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia.
Plant Cell. 2024 May 29;36(6):2140-2159. doi: 10.1093/plcell/koae053.
Transcription factors (TFs) are essential for the regulation of gene expression and cell fate determination. Characterizing the transcriptional activity of TF genes in space and time is a critical step toward understanding complex biological systems. The vegetative gametophyte meristems of bryophytes share some characteristics with the shoot apical meristems of flowering plants. However, the identity and expression profiles of TFs associated with gametophyte organization are largely unknown. With only ∼450 putative TF genes, Marchantia (Marchantia polymorpha) is an outstanding model system for plant systems biology. We have generated a near-complete collection of promoter elements derived from Marchantia TF genes. We experimentally tested reporter fusions for all the TF promoters in the collection and systematically analyzed expression patterns in Marchantia gemmae. This allowed us to build a map of expression domains in early vegetative development and identify a set of TF-derived promoters that are active in the stem-cell zone. The cell markers provide additional tools and insight into the dynamic regulation of the gametophytic meristem and its evolution. In addition, we provide an online database of expression patterns for all promoters in the collection. We expect that these promoter elements will be useful for cell-type-specific expression, synthetic biology applications, and functional genomics.
转录因子(TFs)对于基因表达和细胞命运决定的调控至关重要。在空间和时间上描述 TF 基因的转录活性是理解复杂生物系统的关键步骤。苔藓植物的营养配子体分生组织与开花植物的茎尖分生组织具有一些共同特征。然而,与配子体组织相关的 TF 的身份和表达谱在很大程度上仍是未知的。由于只有约 450 个假定的 TF 基因,因此 Marchantia(Marchantia polymorpha)是植物系统生物学的一个杰出模型系统。我们已经生成了来自 Marchantia TF 基因的近乎完整的启动子元件集合。我们通过实验测试了集合中所有 TF 启动子的报告基因融合,并系统地分析了 Marchantia 原丝体中的表达模式。这使我们能够构建早期营养发育中表达域的图谱,并鉴定出一组在干细胞区活跃的 TF 衍生启动子。细胞标记物为配子体分生组织及其进化的动态调控提供了更多的工具和深入了解。此外,我们还提供了一个包含集合中所有启动子表达模式的在线数据库。我们期望这些启动子元件将对细胞类型特异性表达、合成生物学应用和功能基因组学有用。